Discussion of

"The effects of monetary policy through housing and mortgage choices on aggregate demand"

Karin Kinnerud

Discussed by

Clodomiro Ferreira

Bank of Spain ¹

Fourth Biennial Conference on New Dimensions of Monetary Policy

Warsaw, September 22nd 2022

¹The views expressed here are my own, and do not represent those of the Bank of Spain or the Euro-system

Summary

 What: life-cycle HA model w/ lumpy investment + fixed costs, calibrated to U.S. 1989-2013, to quantify role of housing & mortgage decisions on transmission of MP to agg (non-durable) C

• Main Results:

- adjustments explains **more than 50**% of response in C. 1/3: Δ housing; 2/3: refinancing. Hh making such adjustments: **only 6**%
- Agg C & earnings: "GE" response of earnings accounts for roughly the other 50%.
- Mortgage contracts & pass-through: FRM vs ARM matters for transmission if pass-through to ST and LT rates is different.

Key ingredients & Mechanism

- Frictions in housing & mortgage market: down-payment requirement, transaction costs selling / buying, refinancing costs.
- Endogenous house prices

Summary

 What: life-cycle HA model w/ lumpy investment + fixed costs, calibrated to U.S. 1989-2013, to quantify role of housing & mortgage decisions on transmission of MP to agg (non-durable) C

Main Results:

- Agg C & portfolio choices: ↑ liquidity due to housing & mortgage adjustments explains more than 50% of response in C. 1/3: Δ housing; 2/3: refinancing. Hh making such adjustments: only 6%
- Agg C & earnings: "GE" response of earnings accounts for roughly the other 50%.
- Mortgage contracts & pass-through: FRM vs ARM matters for transmission if pass-through to ST and LT rates is different.

Key ingredients & Mechanism

- Frictions in housing & mortgage market: down-payment requirement, transaction costs selling / buying, refinancing costs.
- Endogenous house prices

Summary

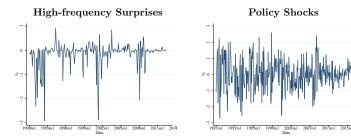
 What: life-cycle HA model w/ lumpy investment + fixed costs, calibrated to U.S. 1989-2013, to quantify role of housing & mortgage decisions on transmission of MP to agg (non-durable) C

Main Results:

- Agg C & portfolio choices: ↑ liquidity due to housing & mortgage adjustments explains more than 50% of response in C. 1/3: Δ housing; 2/3: refinancing. Hh making such adjustments: only 6%
- Agg C & earnings: "GE" response of earnings accounts for roughly the other 50%.
- Mortgage contracts & pass-through: FRM vs ARM matters for transmission if pass-through to ST and LT rates is different.

Key ingredients & Mechanism

- Frictions in housing & mortgage market: down-payment requirement, transaction costs selling / buying, refinancing costs.
- Endogenous house prices


Outline

Size of shock, non-linearities, and durables

- Housing and Rental Markets
- Role of income response

Summary Comment II Comment III Comment III

Size of shock and non-linearities, and durables

Notes: The first panel shows the raw financial market surprises from Gertler and Karadi (2015)). The second panel show the implies monetary policy shocks from the proxy-VAR in the paper. We deviate from this paper in re-estimating the sample period to match that of our micro-data: 1986-2016.

Solution to the household problem:

$$V_j(\mathbf{x}) = \max_k V_j^k$$

with $k \in \{\text{buy, refinance, move, stay, rent}\}\$

	Buyers	Refinancers	Movers	Stayers	Renters
Buyers	0.2(2.4)	-	-	-	7.8 (0.5)
Refinancers	_	1.8(4.7)	14.4 (0.2)	-10.9 (0.4)	$14.1\ (0.0)$
Movers	-	7.6(0.1)	1.5(2.3)	-12.2 (0.3)	0.2(0.2)
Stayers	-	14.3(2.0)	6.9(0.8)	0.1(59.5)	27.7(0.4)
Renters	-4.2(0.3)	-11.9 (0.1)	-3.6(0.1)	-18.3 (0.3)	0.6(25.9)

Table 5: Consumption responses and shares (%)

	Buyers	Refinancers	Movers	Stayers	Renters
Buyers	0.2(2.4)	-	-	-	7.8 (0.5)
Refinancers	-	1.8(4.7)	14.4(0.2)	-10.9(0.4)	14.1 (0.0)
Movers	_	7.6 (0.1)	1.5(2.3)	-12.2(0.3)	0.2(0.2)
Stayers	-	14.3(2.0)	6.9(0.8)	0.1(59.5)	27.7(0.4)
Renters	-4.2(0.3)	-11.9 (0.1)	-3.6 (0.1)	-18.3 (0.3)	0.6 (25.9)

Table 5: Consumption responses and shares (%)

94%

Summary Comment II Comment III Comment III

Size of shock and non-linearities, and durables

- In Cloyne et al. (2020, REStud) we investigate empirically and ina DSGE model, role of liquidity and housing tenure for the transmission of a 25bp MP shock.
- Empirics: restrict to households who dont change tenure.
- Model:
 - Non-durables, durables and housing modelled explicitly
 - three types of hh which endogenously separate into renters, mortgagors, outright owners.

- In Cloyne et al. (2020, REStud) we investigate empirically and ina DSGE model, role of liquidity and housing tenure for the transmission of a 25bp MP shock.
- Empirics: restrict to households who dont change tenure.
- Model:
 - Non-durables, durables and housing modelled explicitly
 - three types of hh which endogenously separate into renters, mortgagors, outright owners.

	Buyers	Refinancers	Movers	Stayers	Renters
Buyers	(2.1)	-	-	-	7.8(0.5)
Refinancers	-	1.8(4.7)	14.4(0.2)	-10.9(0.4)	111 (0.0)
Movers	-	7.6(0.1)	1.5(2.3)	-12.2(0.3)	(0.2)
Stayers	_	14.3(2.0)	6.9(0.8)	0.1(59.5)	7-7 (-4)
Renters	(0.3)	-11.9 (0.1)	-3.6 (0.1)	-18.3 (0.3)	0.6 (25.9)

Table 5: Consumption responses and shares (%)

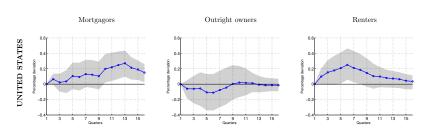


Figure 3: Dynamic effects of a 25 basis point unanticipated interest rate cut on the consumption of non-durable goods and services

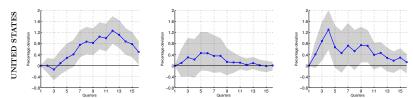


Figure 4: Dynamic effects of a 25 basis point unanticipated interest rate cut on the expenditure of durable goods by housing tenure group.

Modelling the housing and rental markets

Discrete grid for rental and ownership units:

Rental units grid
$$\equiv \tilde{S} = \{\underline{s}, s_2, s_3, ..., \bar{s}\}$$

Ownership units grid $\equiv \tilde{H} \subset \tilde{S}$

Foreign-owned competitive rental firms with long horizon

$$\underbrace{p_{r,t}}_{\text{ental rate}} = \underbrace{(1 - \beta_f)p_{h,t} + \beta_f(\delta_r + \tau_h)p_{h,t+1}}_{\text{user cost}} + \underbrace{\beta_f \Delta p_{h,t+1}}_{\text{gains on transactions}} \underbrace{S - S}_{\text{gains on transactions}}$$

No segmentation in rental-ownership markets: in equilibrium, p_h and S^D such that

$$ar{H} = H_t + S_t^S$$

 $S_t^S = S_t^D$

Modelling the housing and rental markets

Discrete grid for rental and ownership units:

Rental units grid
$$\equiv \tilde{S} = \{\underline{s}, s_2, s_3, ..., \bar{s}\}$$

Ownership units grid $\equiv \tilde{H} \subset \tilde{S}$

Foreign-owned competitive rental firms with long horizon

$$\underbrace{p_{r,t}}_{\text{rental rate}} = \underbrace{(1-\beta_f)p_{h,t} + \beta_f(\delta_r + \tau_h)p_{h,t+1}}_{\text{user cost}} + \underbrace{\beta_f \Delta p_{h,t+1} \frac{S-S}{S}}_{\text{gains on transactions}}$$

No segmentation in rental-ownership markets: in equilibrium, p_h and S^D such that

$$ar{H} = H_t + S_t$$

 $S_t^S = S_t^D$

Modelling the housing and rental markets

Discrete grid for rental and ownership units:

Rental units grid
$$\equiv \tilde{S} = \{\underline{s}, s_2, s_3, ..., \bar{s}\}$$

Ownership units grid $\equiv \tilde{H} \subset \tilde{S}$

Foreign-owned competitive rental firms with long horizon

$$\underbrace{p_{r,t}}_{\text{rental rate}} = \underbrace{(1 - \beta_f)p_{h,t} + \beta_f(\delta_r + \tau_h)p_{h,t+1}}_{\text{user cost}} + \underbrace{\beta_f \Delta p_{h,t+1} \frac{S - S}{S}}_{\text{gains on transactions}}$$

3 No segmentation in rental-ownership markets: in equilibrium, p_h and S^D such that

$$ar{H} = H_t + S_t^D$$

 $S_t^S = S_t^D$

These three modelling choices (that have become relatively standard) imply:

- Total housing stock can be re-shuffled at no cost between the different grid points
- A particular distribution of households on the housing, liquidity space
- In response to a shock:
 - House price and rental rate moving in the same direction
 - A particular movement in prices and quantities. SeeGuren & Greenwald (2022)

Big role of income response!

- Take off-the-shelf estimated path for aggregate income Y (Auclert et al. (2020))
- Assume earnings of all working-age households adjust proportionally:

$$\Delta log(y_{i,j}) = irf(Y) \times log(y_{i,j}) = irf(Y) \times (\alpha_i + g(j) + \eta_{ij} + \nu_{ij})$$

	FRM	FRM $(\Delta Y = 0)$	ARM	ARM ($\Delta Y = 0$
Δ C, optimal portfolio choices Δ C, steady-state discrete choices	$0.70 \\ 0.34$	0.29 -0.03	$0.99 \\ 0.58$	0.59 0.06

Table 12: Consumption responses under ARMs versus FRMs (%)

Overall

- Very relevant and timely question, which requires a model with sufficient heterogeneity and details in order to provide a quantitatively meaningful answer.
- The paper delivers on that front!
- Makes crystal clear one of the main reasons why such structural models are crucial: provide the correct counterfactual
- Far from a general equilibrium model, which might imply a drawback when studying "monetary policy", but still a very useful exercise