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Abstract

Structural VAR models are frequently identified using sign restrictions on

contemporaneous impulse responses. We develop a methodology that can han-

dle a set of prior distributions that is much larger than the one currently al-

lowed for by traditional methods. We then develop an importance sampler that

explores the posterior distribution just as conveniently as with traditional ap-

proaches. This makes the existing trade-off between careful prior selection and

tractable posterior sampling disappear. We use this framework to combine sign

restrictions with information on the volatility of the variables in the model, and

show that this sharpens posterior inference. Applying the methodology to the

oil market, we find that supply shocks have a strong role in driving the dynamics

of the price of oil and in explaining the drop in oil production during the Gulf

war.
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1 Introduction

Structural Vector Autoregressive models (SVARs) are extensively used in applied

Macroeconomics. To provide results that can be interpreted economically, SVARs

require identifying restrictions. It has become popular to introduce identifying re-

strictions in the form of sign restrictions on selected structural parameters. This is

typically done using a Bayesian approach with informative prior beliefs that reflect

the intended signs (Uhlig, 2005, Baumeister and Hamilton, 2015, Arias et al., 2018).

Implementing sign restrictions presents the researcher with a trade-off. There ex-

ist infinitely many prior probability distributions that reflect a desired set of sign

restrictions. Out of this large class of priors, the literature often limits the analy-

sis to the independent or the conjugate Normal-inverse-Wishart-(Haar)Uniform priors

(hereafter NiWU) in order to simplify the analysis of the posterior distribution (Uhlig,

2005, Rubio-Ramirez et al., 2010). However, this constrains the type of prior infor-

mation introduced by the researcher to the one that can be modelled by the NiWU

prior. This is an important limitation, given that, even in a large sample, the results

are affected by the specific probability distribution used to model the desired sign

restrictions. Yet, moving beyond the NiWU prior makes the posterior distribution

(and hence the results) more challenging to analyse (Arias et al., 2018). A trade-off

hence emerges between the flexibility in the selection of the prior distribution used,

advocated by Baumeister and Hamilton (2015), and the tractability of the posterior

distribution, favoured by Rubio-Ramirez et al. (2010).

The first contribution of the paper consists in developing a methodology that makes

the above trade-off disappear. We build our methodology on a new importance sampler

that uses the posterior distribution of the convenient NiWU case as an importance dis-

tribution. While relatively unchallenging to implement, importance samplers require

that the importance distribution covers the relevant support of the target distribu-

tion (Creal, 2012). When working directly on structural parameters, this condition

can be argued to hold only for prior beliefs that do not differ considerably from the
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NiWU prior, a case explored by Arias et al. (2018). We build on their work and show

that this condition holds for a much wider class of prior beliefs if one builds the im-

portance sampler in two separate stages: first on the reduced form parameters, and

second on the mapping into structural parameters. We show that, after acknowledging

this point, the trade-off mentioned above disappears: one can follow Baumeister and

Hamilton (2015) and use prior beliefs that differ considerably from the ones implied

in the NiWU approach, but the sampling of the corresponding posterior distribution

does not become technically more involved compared to the techniques developed by

Rubio-Ramirez et al. (2010) for the NiWU approach. Accordingly, the methodology

offers the most desirable scenario, as it allows for prior flexibility at no additional

computational cost. To further confirm the effectiveness of our sampler, we show that

the results of the applications in this paper are the same when exploring the posterior

distribution using the sequential approach by Waggoner et al. (2016), which is more

time-demanding, but also suitable to explore potentially ill-shaped distributions. We

first develop our methodology by focusing on the case of only sign restrictions, and

then discuss an extension that combines sign and zero restrictions.

The second contribution of the paper consists in proposing a new approach for

sign restrictions on impulse responses, which are arguably the most important statis-

tic of SVAR models. On the one hand, starting from prior beliefs directly on impulse

responses makes it technically demanding to explore the posterior distribution (see

Kociecki, 2010, Barnichon and Matthes, 2018 and Plagborg-Møller, 2019). On the

other hand, as discussed above, the use of the NiWU approach reduces the flexibility

on the actual prior probability distribution introduced on the parameters of interest.

We propose a compromise that parametrizes the structural VAR model as in Uhlig

(2005), hence in the reduced form autoregressive elements and in the contemporaneous

impulse responses. We then depart from Uhlig (2005) and do not restrict the prior

on the contemporaneous impulse responses to the one implied by the NiWU prior.

Instead, we allow for a general prior distribution. In offering prior flexibility on the
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impulse response horizon where flexibility is needed the most (Canova and Pina, 2005

and Canova and Paustian, 2011), our approach provides a balance between prior flex-

ibility on the key structural parameters, and conditionally conjugate priors on all the

remaining parameters. We then explore the posterior distribution of the remaining

parameters using the newly developed importance sampler.

Having developed a tractable framework that can handle a wide class of prior

distributions on the contemporaneous impulse responses, we illustrate that indeed the

results in applied work can be sensitive to the prior distribution used. When mapping

reduced form parameters into structural parameters, the criterion used in the NiWU

approach focuses on orthogonal matrices, namely that orthogonal matrices are drawn

from the uniform (or Haar) distribution. This approach can unintentionally treat as

equally plausible orthogonal matrices that imply an impact of a one-standard-deviation

shock as big as a multiple of the standard deviation of a variable of the model. We

propose a prior specification that ensures that the prior mass associated with one-

standard-deviation shocks is in line with the scaling of the variables, in a way modelled

explicitly by the researcher through a training sample and a set of hyperparameters.

We show that this new feature can tighten posterior bands considerably. Compared

to the NiWU approach, the tighter posterior bands do not trivially come from tighter

priors (and indeed we show that the opposite holds). They come from the fact that

the mapping from reduced form to structural parameters is made consistent with the

volatility of the variables. Alternative prior specifications are, of course, possible.

All in all, the paper suggests that prior beliefs on structural parameters should be

selected carefully, as advocated by Baumeister and Hamilton (2015), but also that the

NiWU approach advocated by Rubio-Ramirez et al. (2010) offers the required point

of departure to explore the posterior distribution associated with this more general

approach.

Since the traditional NiWU approach to sign restricted SVARs frequently implies

relatively wide posterior bands on impulse responses, many studies have proposed
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to combine sign restrictions with additional restrictions on other statistics (see, for

example, Kilian and Murphy, 2012, Antoĺın-Dı́az and Rubio-Ramı́rez, 2018 and Amir-

Ahmadi and Drautzburg, 2018). We argue that taking into account the scaling of the

variables when forming prior beliefs to model sign restrictions on impulse responses

is sufficient to deliver sharper inference, to the point that no additional restrictions

are needed to interpret the results. We show this by applying our methodology to

the long lasting debate on what drives the unexpected variations in the price of oil

and the associated effects on the US economy. Kilian and Murphy (2012) address this

question using sign restrictions on contemporaneous impulse responses applied in a

setting close to the NiWU approach. They show that sign restrictions alone deliver

posterior bands that are too wide to disentangle the different channels driving oil price

dynamics. They propose to add restrictions on the elasticity of oil supply, and find

that oil demand shocks are the main drivers of oil price dynamics. We show, instead,

that applying the same initial sign restrictions in a way that is more consistent with

the scaling of the variables can tighten posterior bands considerably without need for

restrictions on elasticities (as in Kilian and Murphy, 2012) nor on estimated shocks

and historical decompositions (as in the extension of the model by Kilian and Murphy,

2012 proposed by Antoĺın-Dı́az and Rubio-Ramı́rez, 2018).

More precisely, we construct our application to the oil market as follows. We use

a prior probability distribution that treats different structural shocks symmetrically,

ensuring that the prior does not favour one shock over the other as drivers of the

variables in the model. We then show that the wide posterior bands in Kilian and

Murphy (2012) can be replicated using prior beliefs that attach 80% prior probability

mass to large effects of one-standard-deviation shocks on the variables of the model,

based on an initial quantitative assessment from a training sample. Last, we tighten

the prior mass by making it more consistent with the scaling of each variable of the

model. While confirming the initial results by Kilian and Murphy (2012) on the

importance of oil demand shocks, we find that oil supply shocks have a considerable
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effect on oil price dynamics. Quantitatively, we find that as much as 30-40% of the

forecast error variance of the real price of oil can be explained by oil supply shocks. Our

results confirm the findings by Baumeister and Hamilton (forthcoming) and Caldara

et al. (2018). We also find that oil supply shocks were indeed the prevailing driver of

the drop in oil production during the first Gulf War, a feature that Antoĺın-Dı́az and

Rubio-Ramı́rez (2018) introduce as an identifying restriction.

From the methodological point of view, we complement the work by Sims and Zha

(1998) and Baumeister and Hamilton (2015) and study the case of beliefs on con-

temporaneous impulse responses rather than on the contemporaneous relation among

variables. Baumeister and Hamilton (2018) combine prior beliefs on contemporaneous

relations and contemporaneous impulse responses. Relative to Baumeister and Hamil-

ton (2018), we focus on impulse responses and propose a different prior specification

and posterior sampler. Last, we relate to Giacomini and Kitagawa (2015) in stressing

the mapping from reduced form to structural parameters, but we concentrate on a

single prior.

The paper is organized as follows. Section 2 outlines the methodology proposed and

discusses its relation to the existing literature. Section 3 shows an illustrative example

on simulated data based on the estimated bivariate VAR model by Baumeister and

Hamilton (2015). Section 4 reports the application to the oil market. Section 5

concludes.

2 The methodology

In this section we present the structural VAR model and summarize the traditional

NiWU approach to sign restrictions. We then outline our methodology and discuss

the new importance sampler. Last, we propose one possible prior distribution that

can be used with our approach. Our importance sampler can also be used with other

prior beliefs.
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2.1 The model

Following Uhlig (2005), we write the structural VAR model as

yt = π0 +

p∑
l=1

Πlyt−l +Bεt,

= Πwt +Bεt, εt ∼ N(0, Ik), (1)

where yt is a k × 1 vector of endogenous variables, εt is a k × 1 vector of structural

shocks, and wt = (1,y′t−1, ..,y
′
t−p)

′ is an m× 1 vector of the constant and p lags of the

variables, with m = kp+ 1. The matrix Π = [π0,Π1, ..,Πp] is of dimension k×m. We

normalize the covariance matrix of εt to the identity matrix.1

Matrix B in equation (1) captures the contemporaneous effects of one-standard-

deviation shocks, while future horizons of the impulse responses are calculated using

model (1) recursively. Although structural VARs can also be specified in matrix A =

B−1 rather than in B (see, for example, Sims and Zha, 1998), we use model (1) as

in Uhlig (2005) in order to emphasize the key objects of interest for our analysis,

which are the contemporaneous impulse responses. We focus on the case in which

the researcher expresses identifying restrictions in the form of sign (and possibly zero)

restrictions on contemporaneous impulse responses.2

1This normalization is frequently used in applications that employ sign restrictions on impulse
responses, see for example Canova and De Nicoló (2002), Uhlig (2005), Benati and Surico (2009).

2Whether the model is more conveniently expressed in A = B−1 or B (or even in a combined
form) depends on whether the identifying restrictions introduced by the researcher are more naturally
expressed on the contemporaneous relation among variables or on the contemporaneous effects of the
shocks, respectively. Restrictions imposed on one form might not be apparent in the other form,
due to the nonlinearities in the mapping from one to another. Going through the publications of all
top-five journals and the Journal of Monetary Economics since 1998, we found that around 13% of the
total number of issues checked included at least one application of Structural Vector Autoregressive
models. Of the total number of SVAR applications that we found, approximately 15% specifies the
model in the A form, 76% specifies the model in the B form, and 9% specifies the model in the hybrid
AB form. The detailed list is available at this link.
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The reduced form representation of the structural model is

yt = π0 +

p∑
l=1

Πlyt−l + ut,

= Πwt + ut, ut ∼ N(0,Σ), (2)

where it holds that ut = Bεt and Σ = BB′. Orthogonal matrices Q, which by

construction satisfy QQ′ = Ik, allow for the mapping from reduced form to structural

parameters, with

B = h(Σ)Q, (3)

and h(Σ) a factorization of Σ satisfying h(Σ)h(Σ)′ = Σ, for example the Cholesky

factorization.

2.2 The NiWU approach used in the literature

The most popular approach for sign restricted SVAR models expresses prior beliefs

on the parameters (π,Σ, Q), with π = vec(Π) the km × 1 vector that stacks the

columns of Π. As already discussed in the literature, when p(π,Σ) falls within either

the independent or the conjugate Normal-inverse-Wishart prior, drawing from the

joint posterior distribution p(π,Σ|Y ) is technically convenient (see, for example, Koop

et al., 2010). One can then extract Q matrices from the Haar-uniform distribution on

the parameter space QΣ, defined as the set of orthogonal matrices such that the sign

restrictions on the structural parameters are satisfied, given a draw of Σ. Draws of Q

are retained if the sign restrictions are satisfied, and are discarded otherwise.

The convenience of the NiWU approach lies in the existence of efficient algorithms

for the sampling of the posterior distribution, developed for example by Rubio-Ramirez

et al. (2010). In addition, the possibility of discarding undesired draws allows for the

straightforward introduction of sign restrictions not only on contemporaneous impulse

responses, but also on future horizons. The inconvenience is that the prior probability
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distribution is not directly specified on the structural parameters of interest, namely

the impulse responses, but on reduced form parameters and on orthogonal matri-

ces. Since impulse responses are not identified parameters (or in the terminology by

Rubio-Ramirez et al., 2010, are not exactly identified parameters), the implicit prior

distribution also matters in a large sample and must be selected carefully (Baumeister

and Hamilton, 2015).

To appreciate the importance of the above point, consider for simplicity the case

of sign restrictions on the contemporaneous impulse responses. The restrictions can

be modelled with a probability distribution p(B) that attaches zero mass to the values

that do not satisfy the restrictions. However, there are infinitely many probability dis-

tributions {p(B)1, p(B)2, p(B)2, ...} that reflect the same candidate sign restrictions.

Since B is not identified, the posterior distributions {p(B|Y )1, p(B|Y )2, p(B|Y )3, ...}

differ even in a large sample. Accordingly, not only the sign restrictions are impor-

tant, but also the actual probability distribution used to model them (Baumeister and

Hamilton, 2015). Under the NiWU approach, the flexibility on p(B) is constrained by

the fact that it is expressed indirectly through p(Σ, Q), that p(Σ) must be the inverse

Wishart probability distribution, and that p(Q|Σ) is uniform in the space QΣ.3

2.3 The Np(B) approach proposed in this paper

To overcome the limitations discussed in the previous section, we propose expressing

prior beliefs directly on B. We then develop an importance sampler that ensures that

the additional flexibility on the prior specification does not come at a computational

cost.

3That prior beliefs on one parametrization imply questionable or unintended features on some other
parametrization is to some extent inevitable. Baumeister and Hamilton (2015) argue that prior beliefs
should be judged relative to the structural parametrization of interest, which in our application is B.
Arias et al. (2018) derive analytically the distribution implied by the NiWU approach on structural
parameters. See also Section B in the Appendix.
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2.3.1 Prior beliefs expressed directly on (π, B)

We parametrize the model as in equation (1) and express prior beliefs on (π, B), i.e.

p(π, B) = p(π|B) · p(B). (4)

Since π is identified, p(π) matters less compared to p(B), as long as the sample is

sufficiently long. Hence, as also in the NiWU approach, we restrict p(π) to

π ∼ N(µπ, Vπ), (5)

where µπ and Vπ can be a function of B. By contrast, p(B) allows for a large class

of prior distributions, granting the researcher flexibility on the prior beliefs used to

express sign restrictions on key structural parameters.4

As we show in Section C of the Appendix, the joint posterior distribution satisfies

p(π, B|Y ) = p(π|B, Y ) · p(B|Y ), (6)

where

π|B, Y ∼ N(µ∗π, V
∗
π ), (7)

p(B|Y ) ∝ p(B) · |det(B)|−T · |det(Vπ)|−
1
2 · |det(V ∗π )|

1
2 ·

· e−
1
2

{
ỹ′
(
IT⊗(BB′)−1

)
ỹ−µ∗′π V ∗

−1
π µ∗π+µ′πV

−1
π µπ

}
, (8)

with ỹ, W , µ∗π and V ∗π defined in the Appendix. Extracting from p(π, B|Y ) requires a

suitable posterior sampling procedure for the k2 elements in p(B|Y ), or even for fewer

parameters in case zero restrictions are introduced on B. Draws for the km elements

4As in Baumeister and Hamilton (2015) and Baumeister and Hamilton (forthcoming), we require
that p(B) is everywhere nonnegative, and when integrated over the set of all values of B, it produces
a finite positive number. If the posterior distribution is then explored with our importance sampler,
an additional requirement is that the variance of the weights in Stage A of our algorithm is finite
(Geweke, 1989). We return to this point below, as well as in Section C.2 of the Appendix.
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in π|B, Y can instead be obtained with a standard random number generator.

The above approach strikes a balance between flexibility and tractability. On the

one hand, it grants the researcher flexibility on impulse responses at the horizon where

flexibility is needed the most, which is the horizon of the impact effect. On the other

hand, as also the NiWU approach, it makes the analysis more tractable by using

a normal prior distribution on π. The normality on π is not restrictive except in

small samples, given that π is identified. Since sign restrictions on impulse responses

are frequently introduced contemporaneously rather than on future horizons, we do

not view our framework as particularly restrictive. In addition, by parametrizing the

model in π, our approach makes it straightforward to use the prior by Litterman

(1986), which is applied directly on π.

2.3.2 A new posterior sampler for p(B|Y )

To make our approach viable in applied work, we require an efficient algorithm that

explores the posterior distribution p(B|Y ) from equation (8). When prior beliefs p(B)

take the special case implied by the NiWU approach, the posterior distribution p(B|Y )

can be explored using existing algorithms for the NiWU approach (Section B of the

Appendix). We now develop an extension of such algorithms to allow for a wider class

of prior beliefs on B.

We build our sampling procedure on importance sampling techniques. Consider

a parameter vector of interest, θ. Suppose we are interested in sampling from the

target distribution p(θ)target, and suppose we cannot draw from p(θ)target directly, but

can evaluate it. In addition, suppose that we can extract proposal draws from the

importance function p(θ)importance. To the extent that the importance function fully

covers the support of p(θ)target, we can obtain draws from p(θ)target by resampling with

replacement the draws {θi} obtained from the importance distribution using weights

w(θi) = p(θ=θi)
target

p(θ=θi)importance
(see for example Koop, 2003, chapter 4). A popular diagnostic

metric is the effective sample size ESS =
(∑

i

(
wi/
∑
i

(wi)
)2
)−1

, which captures the
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effective number of draws used to represent the target probability, given an initial

number of proposal draws. If the importance function sufficiently covers the support

of the target function, a small effective sample size suggests increasing the number of

draws from the importance function. If, instead, we cannot ensure that the importance

function gives sufficient mass to the support of the target function, the importance

function must be changed irrespectively of the effective sample size (see the simulation

exercise in Section 3).

Define p(B|Y )Np(B) as the posterior distribution associated with the general prior

p(B) from our Np(B) approach (equation 8), and p(B|Y )NiWU as the posterior dis-

tribution associated with the NiWU approach. Since sampling from p(B|Y )NiWU

is not challenging, in principle one could set θ = B, p(θ)target = p(B|Y )Np(B) and

p(θ)importance = p(B|Y )NiWU . Arias et al. (2018) show that this approach works suc-

cessfully if the target distribution p(B|Y )Np(B) does not differ too much from the

tractable distribution p(B|Y )NiWU . However, this procedure does not work in a gen-

eral framework, because one cannot ensure that p(B|Y )NiWU sufficiently covers the

support of p(B|Y )Np(B), except for special cases in which p(B)Np(B) is close to the

prior on B implied in the NiWU approach.

We circumvent the above challenge by exploring p(B|Y )Np(B) indirectly. First,

define the following functions:

• p(Σ|Y )Np(B): posterior distribution on Σ implied by p(B|Y )Np(B) from equation

(8), corresponding to our Np(B) approach;

• p(Σ|Y )NiWU : posterior distribution on Σ corresponding to the NiWU approach;

• p(Q|Σ)Np(B): conditional distribution on Q implicit in the prior p(B) from our

approach;

• p(Q|Σ)NiWU : conditional distribution on Q employed in the NiWU approach,

which coincides with a uniform distribution on the space QΣ;
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• p(B)Np(B): prior distribution on B used in our Np(B) approach.

Then, notice that drawing from p(B|Y )Np(B) is equivalent to drawing from p(Σ|Y )Np(B)

and mapping Σ into B using draws of Q from p(Q|Σ)Np(B). Accordingly, consider the

following importance sampling procedure. First, explore p(Σ|Y )Np(B) using p(Σ|Y )NiWU

as an importance function. Since Σ is identified, p(Σ|Y )NiWU and p(Σ|Y )Np(B) are

close to each other except in small samples, making p(Σ|Y )NiWU a candidate impor-

tance function for p(Σ|Y )Np(B). Then, use p(Q|Σ)NiWU as a proposal function for

p(Q|Σ)Np(B) to map draws from p(Σ|Y )Np(B) into draws from p(B|Y )Np(B). Since

p(Q|Σ)NiWU is conditionally uniform, it fully explores the parameter space QΣ, reduc-

ing to zero the probability that p(Q|Σ)NiWU does not explore the relevant parameter

space covered by p(Q|Σ)Np(B). In the first stage, a low effective sample size suggests

that the sample is too short to imply that p(Σ|Y )NiWU and p(Σ|Y )Np(B) are similar

distributions, a conjecture that can be verified indirectly by computing the effective

sample size and employing existing diagnostic procedures. In the second stage, a low

effective sample size only suggests to increase the number of draws from the importance

function.

Section C.2 of the Appendix provides a further discussion of the sampler. It gives

the analytical form for p(Σ|Y )NiWU and p(Σ|Y )Np(B), and shows that numerically

evaluating p(Q|Σ)Np(B) only requires evaluating the prior p(B)p(B). When only sign

restrictions are introduced on B, when µπ and Vπ are not a function of B, and when

the NiWU approach employed to obtain proposal draws is used in its independent prior

specification, the sampler can then be implemented using the following algorithm:

Our Algorithm (sign restrictions):

Stage A: generate draws from p(Σ|Y )Np(B):

1. run a Gibbs sampler to explore p(π,Σ|Y )NiWU using m1 burn-in repli-

cations and m2 retained replications. Store the retained draws in{
Σd

}m2

d=1
, which by construction represent draws from p(Σ|Y )NiWU ;
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2. for each Σd compute weights

wstage A
d =

p(Σ = Σd|Y )Np(B)

p(Σ = Σd|Y )NiWU

∝

∫
B(Σd)

p(B)Np(B)dB

|det(Σd)|−
d+k
2 · e− 1

2
tr[Σ−1

d S]
, (9)

with
∫
B(Σd)

p(B)Np(B)dB the integral of p(B)Np(B) along the space of

B that implies BB′ = Σd. Assess if the effective sample size ESSA =(∑
d

(
wstage A
d /

∑
d

(wstage A
d )

)2
)−1

is sufficiently high;

Stage B: map draws from p(Σ|Y )Np(B) into draws from p(B|Y )Np(B):

3. randomly select Σd from
{

Σd

}m2

d=1
with replacement using weights

wstage A
d ;

4. draw an orthogonal matrix (Qd) using the method by Rubio-Ramirez

et al. (2010) and compute Bd = h(Σd)Qd;

5a. if (Bd) satisfies the sign restrictions (up to sign and ordering of

the shocks), store (Bd, Qd) and proceed to Step 6;

5b. if (Bd) does not satisfy the sign restrictions, repeat Step 4 up to

m4 times. Stop as soon as (Bd) satisfies the sign restrictions and

proceed to Step 6, otherwise discard (Σd) and move back to Step

3;

6. repeat Steps 3 to 5 until m5 draws are stored;

7. for all draws
{
Bd, Qd

}m5

d=1
compute weights

wstage B
i =

p(Q = Qd|Σd)Np(B)

p(Q = Qd|Σd)NiWU

∝ p(B = Bd)Np(B). (10)

Assess if the effective sample size ESSB =
(∑

i

(
wstage B
d /

∑
i

(wstage B
i )

)2
)−1

is larger than a desired minimum number m6. If so, proceed to Step

8, otherwise move back to Steps 3 to 6 and increase m5;
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8. generate
{
Bd

}ESSB

d=1
by resampling the draws

{
Bd

}m5

d=1
from Step 7

with replacement using weights wstage B
d .5

Our algorithm resamples the posterior draws from the NiWU approach and makes

them representative of the posterior distribution associated with the generic prior

beliefs p(B) from our approach. In the rest of the paper we document that the sampling

time of our algorithm is roughly 6 minutes in the simulation exercise and 30 minutes

in the oil application. In Section C.2 of the Appendix we also argue that the size of

the dataset beyond which the effective sample size in Stage A is sufficiently high is

relatively small in both models considered. The only computationally demanding term

to evaluate for our algorithm is
∫
B(Σd)

p(B)Np(B)dB, which we evaluate numerically as

discussed in Section C of the Appendix. Yet, the Appendix shows that an approximate

algorithm that sets
∫
B(Σd)

p(B)Np(B)dB = 1 reaches an almost identical approximation

of the posterior distribution, further reducing the computational time.

Our algorithm offers a way of implementing sign restrictions. Two modifications

allow extending the algorithm to also account for zero restrictions on B. First, the

computation of p(Σ|Y )Np(B) (required for the weights in Stage A, Step 2) and the eval-

uation of p(Q|Σ)Np(B) (required for the weights in Stage B, Step 7) must now account

for the fact that the mapping from B to Σ features zero restrictions. Accordingly, a

numerical approach must be used to compute the corresponding Jacobian transfor-

mation, and can be done, for example, using the method developed by Arias et al.

(2018). Second, the algorithm generating candidate Q matrices (required in Stage A

for the computation of
∫
B(Σd)

p(B)Np(B)dB and in Stage B to generate proposal draws

for Q), must now be replaced with the methods by either Binning (2013) or Arias

et al. (2018). The existing version of the algorithm can then be applied to the case in

which zero restrictions are introduced on one structural shock of interest.6

5Since ESSB can be much smaller than m5, we resample
{
Bd

}m5

d=1
only ESSB times (or the closest

integer), rather than m5 times. This avoids unnecessary repetitions.
6In our algorithm, extracting Q matrices from the algorithm by Rubio-Ramirez et al. (2010)

ensures that the orthogonal parameter space Q is explored uniformly, and hence is fully explored.
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To further assess whether the algorithm correctly samples from the posterior, we

also explore p(B|Y )Np(B) using the Dynamic Striated Metropolis-Hastings algorithm

by Waggoner et al. (2016). This alternative algorithm is computationally more de-

manding, but can handle potentially irregularly shaped posterior distributions and a

large number of parameters. Using the posterior distribution from this algorithm, we

use simulations to show that the sampling procedure proposed in this section does a

good job in exploring p(B|Y )Np(B), even in relatively small samples. Section D of the

Appendix discusses how we implement the algorithm by Waggoner et al. (2016).

2.4 Proposing one possible prior p(B)

The paper has so far developed an approach that uses a general prior distribution

p(B)Np(B) for the contemporaneous impulse responses, while still allowing for fast and

efficient posterior sampling. We conclude the section on the methodology by discussing

one possible prior specification for p(B). Other prior beliefs are also possible, and must

ultimately be chosen by the applied researcher.

Specifying prior beliefs p(B)Np(B) is challenging, because the literature still pro-

vides limited guidance on explicit prior beliefs on structural parameters. Baumeister

and Hamilton (2015) impose restrictions on B−1 rather than on B, and use the existing

literature to form prior beliefs on the contemporaneous elasticities among variables.

However, as discussed by Kilian and Lütkepohl (2017) and Uhlig (2017), researchers

may lack explicit prior information on the contemporaneous relationship among vari-

ables. Instead, they frequently have prior beliefs that do not go beyond the sign of

contemporaneous impulse responses. As an example, one may entertain the belief that

an exogenous, one-standard-deviation monetary increase in the interest rate decreases

When zero restrictions are introduced, the uniformity in the extraction of Q is lost, except in the
case in which zero restrictions are introduced on only one structural shock of interest. In this case,
the full relevant orthogonal parameter space is still explored. When zero restrictions are introduced
on the effects of more than one shock of interest, the distribution p(Q|Σ)NiWU must be evaluated
numerically, and the possibility that the relevant part of the orthogonal space is not explored must
be addressed.
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inflation, but lacks prior beliefs on the scale of such a decrease.

To overcome this challenge, we propose a prior specification for p(B)Np(B) that

builds on a conventional prior specification used in the literature for p(π) known as

the Minnesota prior (see, for example, the discussion in Canova, 2007 and Kilian

and Lütkepohl, 2017). The crucial step is to take a stand on what is considered a

reasonable scale, or magnitude, for the parameters. With the Minnesota prior, one

first associates each variable with a reasonable scale capturing the volatility of the

variables. This is usually implemented by estimating the variance σi of the residual

on univariate AR processes on each variable, using a training sample. Then, Bayesian

shrinkage is introduced through a set of hyperparameters that shrink the parameters

in π towards the random walk or the white noise process, taking the relative scale of

the variables into account.

We propose to extend the above procedure as follows. Call bij the entry of B

capturing the effect of a one-standard-deviation shock j to variable i. It can be shown

that the covariance restrictions Σ = BB′ imply

− Σ0.5
ii ≤ bij ≤ Σ0.5

ii , (11)

with Σii the i − th element of the diagonal of Σ.7 Accordingly, γi = Σ̂0.5
ii provides

a candidate assessment of the upper bound for bij, where Σ̂ is an estimate based on

a training sample. We then introduce two hyperparameters ψ1 and ψ2 that control

for the location and the width of p(bij). We use independent normal distributions

N(µij, σij) as follows:

1. if no sign restriction is imposed on bij, set µij = 0 and σij = ψ2γi/1.96, so that

the distribution is symmetric around 0, and 95% of the prior mass is in the space

(−ψ2γi, ψ2γi);

7Given Σ = BB′, the equations corresponding to the diagonal elements of Σ are Σii = b2i1 + b2i2 +
...+ b2ik. Since Σii is nonnegative and since b2ij ≥ 0, each element bij must satisfy −Σ0.5

ii ≤ bij ≤ Σ0.5
ii .

See also equation (33) in Baumeister and Hamilton (2015).
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2. if bij is restricted to be positive, start from a normal distribution with µij = ψ1γi

and calibrate the variance such that the distribution has 95% prior mass in the

space (0, ψ2γi);

3. if bij is restricted to be negative, start from a normal distribution with µij =

−ψ1γi and calibrate the variance such that the distribution has 95% prior mass

in the space (−ψ2γi, 0).

Put differently, since the mode of p(bi,j) equals ψ1γi (if bi,j is restricted to be positive) or

−ψ1γi (if bi,j is restricted to be negative), ψ1 controls for the first moment of the prior.

The hyperparameter ψ2 then controls for the second moment of the prior, given that ψ2

is positively related to the probability mass attached to |bi,j > γi|. The convenience of

the above approach is that the researcher sets a plausible upper bound for the effect of

the shocks by selecting γi, and then explicitly introduces Bayesian shrinkage through

the hyperparameters ψ1 and ψ2. If sign restrictions do not identify all shocks, we

suggest numerically introducing the restriction that the non-identified shocks do not

replicate the sign restrictions of the identified shocks. Alternative specifications are

also possible. Note that the prior proposed in this section ensures that the results do

not depend on the ordering of the variables, a convenient property also featured by

the NiWU approach.

3 An illustrative example

In this section we outline the intuition for our approach using simulations on a bivariate

VAR model. We then discuss what drives the difference between the Np(B) approach

proposed in this paper and the traditional NiWU approach used in the literature.
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3.1 Simulation exercise

We build the simulation exercise on the model estimated by Baumeister and Hamilton

(2015). We first employ ordinary least squares to estimate their bivariate reduced form

VAR model, which uses data on the growth rates of the US real labour compensation

and total employment from 1970Q1 through 2014Q4, adding a constant and 8 lags.

We then use the estimated reduced form VAR as the data generating process. We

generate a dataset of 680 draws initializing the data from the estimated unconditional

mean. We discard the first 100 draws to make the data less dependent on the initial

point, and store the next 100 draws to use as a training sample. We then divide the

remaining 480 draws into five pseudo datasets, including up to the first 30, 60, 120,

240 and 480 observations. We use the same training sample for all datasets to improve

the comparison, and to avoid an unreasonably short training sample for the dataset

of smaller size.

For each pseudo dataset, we estimate the structural VAR model from equation

(1) by introducing sign restrictions on the contemporaneous impulse responses. We

identify the demand shock and the supply shock as the structural shocks that move

wages and employment in the same and in the opposite direction, respectively. While

the models employ the same sign restrictions, we model such restrictions using dif-

ferent prior probability distributions. For the NiWU approach, Section 2.2, we use

the independent prior specification and specify the inverse Wishart distribution using

the two most popular parametrizations, which are either the improper prior specifica-

tion or the specification by Kadiyala and Karlsson (1997).8 For the Np(B) approach,

Section 2.3, we introduce prior independence between π and B and specify p(B) as

discussed in Section 2.4, setting ψ1 = 0.8 and ψ2 = 1.5 for the illustration. For all

models estimated, we set µπ = 0 and V −1
π = 0 for both the NiWU and the Np(B). All

8The improper prior specification sets d = 0 and S = 0 · Ik. The parametrization by Kadiyala and
Karlsson (1997) sets d = k + 2, and sets S such that E(Σ) equals the diagonal matrix displaying,
on the diagonal, the variance of the residuals in univariate autoregressive processes, estimated on a
training sample.
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models include a constant term and 8 lags, as in the DGP.

3.2 The intuition behind our importance sampler

We illustrate the intuition behind our posterior sampler by showing the different prob-

ability distributions involved in our algorithm. Figure 1 shows the results for the (1, 2)

entry of Σ and B for some of the datasets considered (see Section E of the Appendix

for the full illustration). The left column of Figure 1 shows the results for Σ and dis-

plays the marginal distributions of Σ1,2 associated with p(Σ|Y )NiWU and p(Σ|Y )Np(B).

These are the importance density and the target density in Stage A of the algorithm,

respectively. p(Σ|Y )Np(B) is sampled using both our algorithm and the Dynamic Stri-

ated Metropolis-Hastings algorithm by Waggoner et al. (2016). The closer these two

empirical distributions are, the more the algorithm successfully explores the posterior

distribution of interest. The right column of Figure 1 reports the equivalent distribu-

tions for B. It shows the marginal distribution of p(B1,2|Y )Np(B) explored using either

our algorithm or the Dynamic Striated Metropolis-Hastings algorithm, and the pro-

posal distribution obtained when mapping draws from p(Σ|Y )Np(B) into B using draws

from p(Q|Σ)NiWU . See Table C2 in the Appendix for how we set the tuning param-

eters required in our algorithm, and Table E4 for the diagnostics on the importance

weights.

As we see from the left column of Figure 1, the dataset with T = 30 observations

is still too small for p(Σ|Y )NiWU (dashed line) to be similar to p(Σ|Y )Np(B) (sampled

by the DSMH, dotted-dashed line), making the reweighted draws a poor approxima-

tion of p(Σ|Y )Np(B). However, as the sample size increases, the likelihood dominates.

This makes p(Σ|Y )NiWU an excellent importance function for p(Σ|Y )Np(B) already for

T = 60, such that the reweighted draws now well approximate p(Σ|Y )Np(B) from the

DSMH sampler. The right column of the figure displays how successful our algorithm is

in sampling the posterior p(B|Y )Np(B). While for T = 30 the distribution p(Σ|Y )Np(B)

is still quite different from the distribution generating proposal draws, the associated

19



Figure 1: Illustration of our algorithm

Note: In the left column, the proposal draws are obtained from Step 1 in our algorithm, the
reweighted draws correspond to the same draws reweighted using weights from Step 2, while
the draws associated with the Dynamic Striated Metropolis-Hastings algorithm are obtained
indirectly after running such algorithm on p(B|Y )Np(B). In the right column, the proposal draws
correspond to draws obtained from Step 6 of our algorithm, the reweighted draws are obtained
from Step 8, and the remaining draws are associated with the Dynamic Striated Metropolis-
Hastings algorithm run on p(B|Y )Np(B). See Figure E1 to Figure E5 in the Appendix for the full
illustration.

sampling of p(B|Y )Np(B) is already close to what is detected by the Dynamic Striated

Metropolis-Hastings algorithm. For the remaining datasets the approximation im-

proves even further, showing that our sampler is successful in sampling the posterior

distribution of interest.

Table 1 provides additional intuition for our algorithm by reporting relevant metrics

from the sampler. As should be expected, the higher the sample size of the dataset,
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Table 1: Performance of our algorithm

Stage A Stage B
T T − p proposal effective relative proposal effective relative

draws sample size effective draws sample size effective
sample size sample size

m2 ESSA ESSA

m2
m5 ESSB ESSB

m5

30 22 50,000 1,894 0.0379 80,000 45,322 0.5665
60 52 50,000 27,594 0.5519 80,000 56,260 0.7033
120 112 50,000 38,853 0.7771 80,000 53,740 0.6718
240 232 50,000 44,156 0.8831 80,000 52,522 0.6565
480 472 50,000 46,672 0.9334 80,000 51,858 0.6482

the higher the effective sample size in Stage A, further confirming that the importance

function tends to coincide with the target distribution. By contrast, in Stage B a

high effective sample size is not required for the sampler to successfully explore the

posterior distribution.

3.3 Comparison to the NiWU approach

Having discussed the key intuition of the sampler, we now illustrate what drives the

difference between the Np(B) and the NiWU approach, and compare the computa-

tional time. To improve the comparison, for each dataset we run the NiWU approach

to generate the same number of draws that are effectively obtained from the Np(B).

Figure 2 shows the equivalent of Figure 1 by reporting prior and posterior distribu-

tions associated with our Np(B) approach and with the traditional NiWU approach.9

As we see from Figure 2, the prior distributions on Σ1,2 are quite different, but the

associated posterior distributions are very similar already for T = 60. By contrast,

since B is not identified, differences in prior beliefs on B between the NiWU and the

Np(B) approach remain present in the posterior distributions also in a large sample,

as p(Q|Σ)NiWU and p(Q|Σ)Np(B) differ. Figure 2 also shows that the posterior dis-

tributions associated with the two parametrizations of the NiWU approach are quite

9The prior distribution in the NiWU case with the improper prior specification is approximated
using d = k + 2 and S = 0.01 · I2, see Figure E7 in the Appendix.
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Figure 2: Comparison to the NiWU approach

-0.2 0 0.2
0

NiWU, imp.
NiWU, KK
Np(B)

i,j, true

-0.5 0 0.5
0

-0.2 0 0.2
0

-0.5 0 0.5

-0.2 0 0.2
0

-0.5 0 0.5

Note: See Figure E6 to Figure E13 in the Appendix for the full illustration.

similar already for T = 60. This occurs because, upon learning from the data about

Σ, the remaining posterior uncertainty on B largely comes from p(Q|Σ)NiWU , which is

the same irrespectively of the parametrization of the inverse Wishart prior. Note also

that p(B|Y )Np(B) is tighter than p(B|Y )NiWU , despite p(B)Np(B) being wider than

p(B)NiWU . This happens because p(B|Y )NiWU inherits posterior uncertainty from

p(Q|Σ)NiWU , which does not take an explicit stand on which part of the structural

parameter space the researcher considers more reasonable, but accepts what is implied

by the uniformity on QΣ.

The intuition behind the differences between the Np(B) and the NiWU approach
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Figure 3: Rotation angle implicit in p(Q|Σ)NiWU and p(Q|Σ)Np(B)
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Note: The figure shows the distribution of the ration angle that ensures Q̃ = Q(θ), with Q(θ)

the Givens transformations matrix

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
and Q a draw from either p(Q|Σ)NiWU

or p(Q|Σ)Np(B). See Section C.2 of the Appendix for further details.

can be further clarified by abstracting from estimation uncertainty and comparing

p(Q|Σ)NiWU to p(Q|Σ)Np(B). In the bivariate case, distributions on Q can be shown

graphically as the distribution on the corresponding rotation angle θ of Givens trans-

formations matrices (see, for example, Fry and Pagan, 2011, as well as the analysis in

Baumeister and Hamilton, 2015). Uniformity on Q is equivalent to uniformity on θ.

The top-left plot of Figure 3 shows that indeed the angle of the rotation matrices that

replicate draws of Q from the algorithm by Rubio-Ramirez et al. (2010) is uniformly

distributed in the support [−π/2, π/2]. Conditioning on Σtrue, the rotation angles

consistent with the sign restrictions are the subset shown in the bottom-left plot of

the figure, which correspond to QΣtrue . While the NiWU approach treats such angles

as equally plausible, the Np(B) approach does not, taking instead an explicit stand
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on the part of the structural parameter space that is considered more in line with the

scaling of the variables. The remaining panels of Figure 3 show the implied distribu-

tion on B. Given the constraint from equation (11), no draw of bij is obtained outside

of the interval [−Σ0.5
i,i,true,+Σ0.5

i,i,true], as displayed in the figure. The NiWU approach

implies a distribution that is skewed towards such bounds (see also equation (33) in

Baumeister and Hamilton, 2015 and their Figure 1), while the Np(B) approach im-

plies a distribution that reflects p(B)Np(B). As the sample size increases, the posterior

distributions p(B|Y )NiWU and p(B|Y )Np(B) approach the ones displayed in Figure 3.10

Table 2: Comparison of the computational time

Np(B) approach NiWU approach

Our algorithm DSMH with with
algorithm improper KK(1997)

Stage A Stage B Total prior prior

T h m s h m s h m s h m s h m s h m s

30 5 52 20 6 12 3 40 24 22
60 5 32 17 5 50 4 35 30 29
120 5 34 17 5 52 7 5 32 31
240 5 37 17 5 55 28 8 34 32
480 5 52 17 6 9 2 25 12 37 37

Note: All codes are run on Matlab, except for the Dynamic Striated Metropolis-Hastings algo-
rithm, which we coded on Fortran to reduce computational time. The codes run on a computer
with an Intel i7-7700K 4.2GHz Quad Core processor and 64 GB RAM.

Table 2 shows the computational time of the Np(B) approach, the NiWU approach,

and of the Dynamic Striated Metropolis-Hastings algorithm. All applications of the

Np(B) approach and the NiWU approach take only a few minutes to run on Matlab.

10Figure 3 shows the analysis conditioning on Σtrue. As the sample size increases, both p(Σ|Y )NiWU

and p(Σ|Y )Np(B) collapse to a point mass at Σtrue, making the analysis conditioning on Σtrue relevant
as a discussion of the posterior distributions p(B|Y )NiWU and p(B|Y )Np(B). Within the NiWU
approach, the fact that the prior beliefs on B differ across parametrizations, while still leading to
almost identical posteriors, suggests that it can be misleading to inspect prior beliefs on structural
parameters to study what information the NiWU approach introduces to the results. It is, instead,
best to consider the analysis conditioning on Σtrue. Note also that the uniform distribution in the
full space Q explored by the algorithm by Rubio-Ramirez et al. (2010) is used in our algorithm as a
device to explore the distribution that is uniform in QΣtrue

. The marginal distributions p(Q)NiWU =∫
p(Q|Σ)NiWU p(Σ)NiWU dΣ and p(Q|Y )NiWU =

∫
p(Q|Σ)NiWU p(Σ|Y )NiWU dΣ are not necessarily

uniform, nor they have mass in the full space Q (Figure E16 in the Appendix) .
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The Dynamic Striated Metropolis-Hastings algorithm takes longer to run due to its

sequential nature.

4 Application to the oil market

We now apply our methodology to real data and revisit the model of the oil market by

Kilian and Murphy (2012). We show that inference becomes sharper when taking into

account the scaling of the variables in forming prior beliefs to introduce the same sign

restrictions as Kilian and Murphy (2012). The exercise also illustrates to what extent

the results are affected by the actual prior probability distribution used to express the

sign restrictions.

4.1 The model

We use the three-variate model by Kilian (2009) and Kilian and Murphy (2012), which

has become standard in the literature. The model includes the percentage variation

in global crude oil production, the detrended index of global real economic activity

developed by Kilian (2009), and the log of the real price of oil, multiplied by 100.

We use the data updated by Antoĺın-Dı́az and Rubio-Ramı́rez (2018), which covers

the period from January 1971 to December 2015. To improve the comparability with

Antoĺın-Dı́az and Rubio-Ramı́rez (2018) we add a constant and 24 lags in the model.

We use the independent NiWU specification and set µπ = 0 and V −1
π = 0 for both the

NiWU and our Np(B) approach.

We label the structural shocks using the sign restrictions on the contemporaneous

impulse responses employed by both Kilian and Murphy (2012) and Antoĺın-Dı́az

and Rubio-Ramı́rez (2018), see Table 3. However, we depart from both papers along

two dimensions. First, we do not introduce explicit restrictions on elasticities, nor

on the sign of the structural shocks and on the historical decompositions. Second

we do not model the sign restrictions through the NiWU approach, but through the
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Table 3: Sign restrictions on the contemporaneous impulse responses

A) Sign restrictions used
oil supply aggregate demand oil-specific demand

shock shock shock
Oil production – + +
economic activity – + –
real price of oil + + +

B) Prior distributions modelling the sign restrictions

ψ1 ψ2 Prob(|bi,j | > γi)
prior I wide prior 2 4 0.83
prior II medium prior 1 2 0.53
prior III tight prior 0.8 1.5 0.33

prior distribution proposed in Section 2.4. As discussed, this prior first uses a training

sample to estimate an indicative upper bound γi for the elements bi,j, and then allocates

prior mass by selecting the hyperparameters ψ1 and ψ2. ψ1 affects the first moment

of the marginal prior distribution in p(bi,j), whose mode is set equal to ±ψ1γi, while

ψ2 controls for the second moment of the prior and is positively related to the prior

mass allocated to |bi,j| ≥ γi. We explore the role of prior beliefs by using the three

separate specifications for ψ1 and ψ2 documented in Table 3. Prior I corresponds to

a wide prior that attaches approximately 80% probability mass beyond the estimated

upper bound γi. Priors II and III progressively tighten the prior to make it more

consistent with the scaling of the variables, giving approximately 50% and 30% prior

probability mass beyond γi, respectively. We favour Prior III, which implies a mode

of the marginal prior slightly below the estimated upper bound, while still allowing

for a non-negligible tail that gives prior mass above this point.11

11We estimate the scale γi using a training sample on the first 20% of the available observations, as
in Primiceri (2005). The prior distributions, which are shown in Figure F20 of the Appendix, are such
that the marginal prior on the effect of different shocks on each variable only differ potentially up to
sign but not magnitude, in order not to introduce asymmetries in the results. See also Table F10 for
an illustration of the distribution of the prior probability mass.
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4.2 Results

To make the analysis more focused, we concentrate our discussion on the drivers of oil

price variations, comparing the results from our Np(B) approach to the results from

the NiWU approach, parametrized with the independent improper prior specification.

We refer to Section F of the Appendix for the analysis of the other variables in the

model, as well as for robustness checks and diagnostics on the performance of the

sampler.

Figure 4 shows how one-standard-deviation shocks affect the price of oil, and com-

pares the results from the NiWU approach and from our Np(B) approach. The columns

of the figure differ for the structural shock considered, while the rows differ for whether

prior specification I, II or III is used in the Np(B) approach. The figure shows that

the pointwise posterior bands associated with the NiWU approach are quite wide.

Indeed, it is this feature that led Kilian and Murphy (2012) and Antoĺın-Dı́az and

Rubio-Ramı́rez (2018) to introduce further restrictions on elasticities and/or shocks

and historical decompositions. The posterior bands associated with the Np(B) ap-

proach can, instead, be tighter, depending on the prior specification used. We find

that, irrespectively of the prior specification, the dataset is sufficiently large for the

NiWU and the Np(B) approach to deliver nearly identical posteriors for the bounds

±Σ0.5
i,i that constrain bi,j through equation (11) (see Figure F19, Figure F25-Figure F27

in the Appendix). Accordingly, the differences in p(B|Y )NiWU and p(B|Y )Np(B) are

strongly influenced by differences in p(Q|Σ)NiWU (which is the uniform distribution in

QΣ) and p(Q|Σ)Np(B) (which is the distribution implied by the prior beliefs p(B)Np(B)

used).

As shown in the first row of Figure 4, prior I from our Np(B) approach replicates

the posterior bands from the NiWU approach up to a close approximation. Yet, prior

I attaches as much as 80% prior mass to values of B above the estimated reasonable

bound γi. We view this prior mass as too wide given the scaling of the variables. As

shown with prior II and III, tightening p(B)Np(B) to make it more consistent with the
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Figure 4: Posterior impulse responses for the real oil price, comparing NiWU and Np(B)
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Note: The dotted line and the shaded areas show the pointwise median, 68 and 95% credible
bands associated with the improper prior parametrization of the NiWU approach. The remaining
solid and dashed lines show the same statistics associated with our Np(B) approach. The rows
of the figure differ for the parametrization used for the prior distribution p(B)Np(B), as from
Table 3. See Figure F28 to Figure F31 in the Appendix for the full analysis.

scaling of the variables tightens the posterior bands considerably. On the short horizon

of the response, the 95% credible bands associated with the Np(B) approach under

prior III are as tight as the 68% credible bands of the NiWU approach, making inference

sharper. Using prior III, which attaches approximately 30% prior mass to values of B

above the estimated upper bounds γi, we find that oil-specific demand shocks generate

an immediate increase in the price of oil, an increase that then progressively declines,
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while aggregate demand shocks produce stronger effects also at longer horizons. While

this confirms the results by Kilian (2009) that demand shocks are important drivers

of oil price responses, we find that this is more so for aggregate demand shocks rather

than oil-specific demand shocks. In addition, we find that oil supply shocks generate

sizeable effects on the price of oil, although with smaller effects when focusing on the

longer horizon of the response.

The result on the importance of oil supply shocks in driving the price of oil is in line

with the results by Caldara et al. (2018) and Baumeister and Hamilton (forthcoming)

despite the different methodologies used. Caldara et al. (2018) use an exactly identi-

fied model that minimizes the distance between the elasticities implied by the VAR

model and external estimates. As they show, the parametrization of the elasticities

have an important effect on the results. Baumeister and Hamilton (forthcoming) also

build their analysis on external information on price elasticities on oil, and use a sign

restricted framework. They then add information on the dynamics in inventories and

measurement error, weight data differently depending on the period that they cor-

respond to, and combine sign restrictions on elasticities with sign restrictions on the

contemporaneous impulse responses. We show that the results in Caldara et al. (2018)

and Baumeister and Hamilton (forthcoming) are robust to a framework that focuses

on the sign restrictions on the contemporaneous impulse responses. Figure F42 in the

Appendix shows that the posterior distributions on the price elasticities implicit in

our approach are broadly consistent with the estimates by Caldara et al. (2018) and

Baumeister and Hamilton (forthcoming).

The analysis of forecast error variance decompositions, displayed in Figure 5, shows

that the NiWU approach can deliver credible bands that are too wide to imply results

that can be interpreted. The 95% pointwise credible band can go from close to 0 to

close to 1, failing to disclose the role of the structural shocks in driving the variance

of forecast errors. By contrast, inference is much sharper when prior mass on key

structural parameters is ensured to be in line with the scaling of the variables. As
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Figure 5: Posterior forecast error variance decomposition for the real oil price, comparing
NiWU and Np(B)
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Note: The dotted line and the shaded areas show the pointwise median, 68 and 95% credible
bands associated with the improper prior parametrization of the NiWU approach. The remaining
solid and dashed lines show the same statistics associated with our Np(B) approach. The rows
of the figure differ for the parametrization used for the prior distribution p(B)Np(B), as from
Table 3. See Figure F32 to Figure F34 in the Appendix for the full analysis.

we move our prior from specification I to III, we find that the unexpected variations

in the price of oil are mainly driven by supply shocks and aggregate demand shocks

for approximately 20-50% and 30-60%, respectively, while oil-specific demand shocks

have a more subdued effect. The result that supply shocks have an important role

in driving unexpected variations in the price of oil is consistent with Caldara et al.

(2018).
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Figure 6: Historical decomposition, cumulative effects of the shocks

1990: oil supply shocks → oil production growth
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Note: The figure shows the data (solid black line) and its decomposition into the cumulative
contribution of the estimated structural shocks from the beginning of the sample until period t.
The dotted line and the shaded areas show the pointwise median, 68 and 95% credible bands
associated with the improper prior parametrization of the NiWU approach. The remaining
solid and dashed lines show the same statistics associated with our Np(B) approach. Having
subtracted the value corresponding to June 1990 before computing pointwise statistics, the figure
can be interpreted as percent relative to the initial point. See Figure F39 to Figure F41 in the
Appendix for the full analysis.

We conclude the analysis by further relating our work to Antoĺın-Dı́az and Rubio-

Ramı́rez (2018). Antoĺın-Dı́az and Rubio-Ramı́rez (2018) achieve a sharpening of the

posterior credible sets by introducing the restriction that oil supply shocks matter

significantly in driving the drop in oil production in August 1990. Indeed, this is the

key event in their application, as they discuss. Figure 6 shows that our approach

delivers this feature as a result, rather than as a restriction. As we make our prior

more in line with the scale of the variables, the credible sets associated with our

methodology leave little doubt that oil supply shocks were relevant drivers of the

drop in the oil production. By contrast, the NiWU approach delivers wide posterior

bands, leading Antoĺın-Dı́az and Rubio-Ramı́rez (2018) to introduce the restriction.

The result that supply shocks contributed to the decline in oil production in August

1990 is also reported by Caldara et al. (2018).
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5 Conclusions

Structural Vector Autoregressive models are frequently identified using sign restrictions

on the impulse response of selected structural shocks of interest. However, it is not

clear how this identification approach should be implemented in practice. On the

one hand, it is convenient to use the independent or the conjugate Normal-inverse-

Wishart-Uniform prior currently employed in the literature, as this makes posterior

sampling highly tractable. On the other hand, it is important to retain flexibility on

the prior beliefs implied for the key structural parameters of interest, since such prior

affects the statistics of interest even in a large sample.

We propose an approach that offers flexibility for the prior specification on the

impulse response horizon that matters the most, while ensuring that the joint posterior

distribution is tractable. We illustrate the intuition of our approach using simulations

on the bivariate demand and supply model by Baumeister and Hamilton (2015). We

then develop an application to the oil market and show that inference becomes sharper

when prior beliefs are made consistent with the scaling of the variables. We find that

oil supply shocks have a comparable role in explaining oil price dynamics relative to

oil-specific demand shocks.
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