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Abstract

The article proposes a new conceptual framework for capturing production,

R&D, and economic growth in aggregative models which extend their horizon

into the digital era. Two key factors of production are considered: hardware,

including physical labor, traditional physical capital and programmable hard-

ware, and software, encompassing human cognitive work, pre-programmed

software, and artificial intelligence (AI). Hardware and software are comple-

mentary in production whereas their constituent components are mutually

substitutable. The framework generalizes, among others, the standard model

of production with capital and labor, models with capital–skill complementar-

ity and skill-biased technical change, and unified growth theories embracing

also the pre-industrial period. It offers a clear conceptual distinction between

mechanization and automation as well as between robotization and the devel-

opment of AI. It delivers sharp, economically intuitive predictions for long-run

growth, the evolution of factor shares, and the direction of technical change.
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1 Introduction

This paper addresses an important challenge to economic growth theory: to adapt

the workhorse models to the realities of the incipient digital era, characterized by

gradual automation, explosion of data communication and collection, and rapid ad-

vances in AI. But for a few forerunners,1 growth models developed thus far are either

rooted entirely in the industrial era, or focus on even earlier eras. Unified growth the-

ory, in particular, pays specific attention to the period of Industrial Revolution but

does not speak to the ongoing Digital Revolution which is – arguably – transforming

the world before our eyes in a comparably profound way. Existing models tend to

be ill-suited to modeling the supply side of the digital-era economy featuring com-

puter and robot hardware, pre-programmed software and AI algorithms, primarily

because they are based on the classical capital–labor dichotomy which is incompat-

ible with a world where information processing, communication and storage, as well

as decision making, is increasingly detached from human minds.

The contribution of this conceptual study is to lay out the rudiments of a macroe-

conomic framework for modeling production, R&D and growth across the human

history, including and specially focusing on the digital era. The proposed formal-

ization – the hardware–software model – is designed so that it nests the following

conventional models as special cases:

(i) a standard treatment of the industrial economy respecting Kaldor’s facts,

(ii) a model of capital–skill complementarity and skill-biased technical change,

(iii) a unified growth theory addressing the period of Industrial Revolution,

(iv) a theory of inception and further development of the digital era.

To get there, however, I take a big step back and re-evaluate the key inputs to

aggregate production and R&D.

The key premise of the proposed new framework lies with the postulate that

valuable output can only be generated through purposefully initiated physical ac-

tions. Thus, generating output (either in the material or in the informational form)

requires both some physical action and some code, a set of instructions describing

the action. In consequence, the general form of any production function should fea-

ture some physical hardware X, able to perform the action, and some disembodied

software S, providing the relevant information. This simple observation has pro-

found consequences. It underscores, for example, that physical capital and human

physical labor should be modeled as substitutable inputs, contributing to the hard-

ware factor: they are the means by which we perform physical action. Analogously,

1For example, Acemoglu and Restrepo (2018); Benzell, Kotlikoff, LaGarda, and Sachs (2015);

Berg, Buffie, and Zanna (2018).
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human cognitive work, pre-programmed software and AI should also be viewed as

substitutes, making up the software factor: they are the source of instructions for

the performed action. In turn, hardware and software are clearly complementary

and indispensable in the process. (By complementarity, in practice I will mean their

gross complementarity in the sense of elasticity of substitution being below unity.)

The model also formalizes the observation that programmable hardware, similarly

to the human body, has double duty: as means of performing physical actions and

as a container for software – stored information and working algorithms.

Key predictions of the hardware–software model in terms of long-run dynamics

and the evolution of factor shares are as follows. First, in the digital era, as produc-

tion gets increasingly automated, software becomes proportional to hardware be-

cause it can be virtually costlessly copied and thus can easily scale up to the level of

available programmable (computer, robot, etc.) hardware. Under constant returns

to scale and in the absence of further technological revolutions2, this generates long-

run endogenous growth by hardware accumulation alone; in the limit, all production

is automated. Second, complementarity and substitutability shape the dynamics of

factor shares. The Industrial Revolution had vastly different implications for factor

shares than the ongoing Digital Revolution because the former featured replace-

ment of humans with machines in the hardware factor (brawn) whereas the latter

pertains to the software factor (brains). The Industrial Revolution (or the process

of mechanization) raised demand for human skilled labor; the Digital Revolution

(or the process of automation) replaces human skilled labor and raises demand for

complementary computer hardware, which eventually becomes the long-run growth

bottleneck. Third, all technical change is naturally software-augmenting.

This paper is related to a few strands of literature. First, the literature on

production function specification and estimation, in particular with capital–skill

complementarity, unbalanced growth, as well as investment-specific and skill-biased

technical change.3 Second, the literature preoccupied with accounting for the ac-

cumulation of information and communication technologies (ICT) and their broad

growth-enhancing role as a general purpose technology.4 Third, studies focusing on

automation and its impacts on productivity, employment, wages and factor shares.5

2Given the observed pace of growth in computing power and AI capabilities, further technolog-

ical revolutions are actually quite likely.
3Including among others Gordon (1990); Jorgenson (1995); Greenwood, Hercowitz, and Krusell

(1997); Hercowitz (1998); Kumar and Russell (2002); Koop, Osiewalski, and Steel (1999, 2000);

Krusell, Ohanian, Ŕıos-Rull, and Violante (2000); Henderson and Russell (2005); Caselli and Cole-

man (2006); Klump, McAdam, and Willman (2007, 2012); Growiec (2012); Mućk (2017); McAdam

and Willman (2018).
4Including among others Bresnahan and Trajtenberg (1995); Timmer and van Ark (2005); Jor-

genson (2005); Brynjolfsson and McAfee (2014); Gordon (2016); Brynjolfsson, Rock, and Syverson

(2017); Nordhaus (2017); Aum, Lee, and Shin (2018).
5Including among others Acemoglu and Autor (2011); Autor and Dorn (2013); Graetz and
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Fourth, the nascent literature on macroeconomic implications of development of AI

and autonomous robots.6 Last but not least, the voluminous literature on R&D

based endogenous growth.7

The remainder of the paper is structured as follows. Section 2 defines the factors

of production of the hardware–software model. Section 3 discusses the conceptual

underpinnings of the aggregate production function. Section 4 tackles the R&D

equation. Section 5 discusses the special case of CES functions. Section 6 con-

cludes with a general discussion of the framework, spelling out the key concepts and

misconceptions of the digital era, and speculating about the future.

2 The Hardware–Software Model

In any conceivable technological process, valuable output is generated through some

physical action. It is a local reduction of entropy, and so it typically does not occur

by chance but is purposefully initiated. In other words, producing valuable output

requires both some physical action and some code, a set of instructions describing

the action. Hence, I shall posit that the postulated general production function (for

whatever the output is) should feature some physical hardware X, able to perform

the action, and some disembodied software S, providing information on what should

be done and how. This naturally leads to a general form:

Output = F(X,S), (1)

where F is increasing in both factors and is specified such that hardware X and soft-

ware S are always mutually complementary. The degree of their complementarity is

an open question; the plausible range spans from perfect complementarity (Leontief

form) if just one method of producing output exists, to imperfect complementarity

if firms are allowed to choose their preferred technology from a technology menu

(Jones, 2005; Growiec, 2013, 2018). Intuitively, some degree of substitutability is

likely because the same outcome can be generated with more resources (larger X)

but less efficient code (smaller S), or vice versa. One natural way to instantiate

this assumption is to take a CES specification with an elasticity of substitution

σ ∈ (0, 1), cf. Klump, McAdam, and Willman (2007, 2012). The particular CES

Michaels (2015); Acemoglu and Restrepo (2018); Andrews, Criscuolo, and Gal (2016); Arntz, Gre-

gory, and Zierahn (2016); Frey and Osborne (2017); Barkai (2017); Autor, Dorn, Katz, Patterson,

and Van Reenen (2017); Jones and Kim (2017); Hemous and Olsen (2018).
6Including Yudkowsky (2013); Graetz and Michaels (2015); Sachs, Benzell, and LaGarda (2015);

Benzell, Kotlikoff, LaGarda, and Sachs (2015); DeCanio (2016); Acemoglu and Restrepo (2018);

Aghion, Jones, and Jones (2017); Berg, Buffie, and Zanna (2018).
7Including among others Romer (1990); Jones and Manuelli (1990); Aghion and Howitt (1992);

Jones (1995); Acemoglu (2003); Ha and Howitt (2007); Madsen (2008); Bloom, Jones, Van Reenen,

and Webb (2017); Kruse-Andersen (2017).
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form of the F function is however not necessary for the results.8

It must be noted that such treatment abstracts from raw materials and energy

which are being used up in the production process. The specification (1) works as

if we assumed that natural resources and energy required for production were given

for free and in infinite supply, or at least they were sufficiently cheap and abundant

that they never become a bottleneck. Relaxing this simplifying assumption is left

for further research.

Hardware X encompasses both physical labor performed by humans (and do-

mesticated animals), as well as physical actions performed by machines. Hence, X

encompasses both the services of physical capital K and of unskilled labor L, where

the latter variable excludes any know-how or skill of the worker.

Software S, in turn, encompasses all useful instructions which stem from the

available information, in particular the practical implementation of state-of-the-art

technologies. Hence, it includes the skills and technological knowledge employed

in human cognitive work, H, as well as pre-programmed software Ψ, which is es-

sentially a task-specific list of instructions to be performed by the associated pro-

grammable hardware.9 Software Ψ may in particular include artificial intelligence

(AI) algorithms, defined as the software which is able to learn from data as well

as potentially self-improve and self-replicate. It is implicitly assumed that there

are no physical obstacles precluding pre-programmed software from performing (or

providing the hardware with instructions to perform) any task available to a human

(Yudkowsky, 2013; Dennett, 2017).

Within hardware, I view the agents of physical action as perfectly substitutable.

This reflects the idea that whatever it is that performs a given set of actions, if the

actions are precisely defined then the outcome should be the same. The same logic

applies to software: regardless of whether a set of instructions comes from a human

brain or a mechanical information processing unit, if the actual information content

of instructions is the same, then the outcome should be the same, too.10

8For example, Growiec and Mućk (2018) propose a more flexible framework that also allows

the modeler to control whether the factors are gross substitutes or gross complements.
9Contemporary programmable hardware consists typically of computers, robots, and other de-

vices embodying digital chips. In principle, it does not have be silicon-based, though. In fact the

first pieces of non-biological programmable hardware were mechanical devices such as the Jacquard

loom using punchcards, first invented in 1804.
10An important caveat is that by saying this I exclude complex, multi-step tasks that have not

been yet fully automated. For example, if a cognitive task consists of two necessary steps, the

first of which can be performed by a computer but the latter (under current technology) only by

a human, then pre-programmed software and human cognitive work will turn out complementary

at the level of the whole task even though they are perfectly substitutable at the level of the two

sub-tasks. This apparent complementarity disappears, however, once the whole task becomes fully

automatable. A more detailed treatment of complex tasks within the hardware–software model is

an important objective for further research.
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This leads to the following formula:

Output = F(X,S) = F(L+K,H + Ψ). (2)

Each of the four identified factors of production has its unique properties (Table 1).

• Human physical labor L is rivalrous and given in fixed supply per worker and

unit of time, L = ζN where ζ ∈ [0, ζ̄] denotes the supply of physical labor per

worker in a unit of time, expressed in physical capital units, and N is the total

number of workers.

• Physical capital K is rivalrous but can be unboundedly accumulated in per-

capita terms. Physical capital K may be non-programmable or programmable.

The share of programmable (computer, robot, etc.) hardware in total physical

capital is denoted by χ (so that χ ∈ [0, 1]).

• Human cognitive work H consists itself of three components, technological

knowledge A, skill level h, and the number of workers N , as in H = AhN .

Technological knowledge A, or the size of the “repository of codes” is non-

rivalrous (Romer, 1990) and accumulable. Per-capita skill levels h are rival-

rous and bounded above, theoretically by the optimal code for performing a

given task, but in practice by a much lower number h̄ > 0 due to the human

inability to rewire our brains in order to perform cognitive tasks more effi-

ciently (Yudkowsky, 2013) as well as human mortality and decreasing returns

in education (Growiec, 2010).

• Pre-programmed software Ψ also consists of three components, technological

knowledge A, “AI skill level” ψ which captures the degree to which pre-

programmed software is able to perform the tasks collected in A (and the

associated efficiency), and the stock of programmable hardware χK on which

the software is run, as in Ψ = AψχK. Technological knowledge A is the same

as above.11 The AI skill level ψ is assumed to be bounded above by the op-

timal code for performing a given task (e.g., perfect accuracy), though there

may be in fact a much lower upper bound (Hanson and Yudkowsky, 2013).

Because software can be virtually costlessly copied, it is assumed that it can

scale up to the level of all available programmable hardware χK.12

It is important to observe that the hardware–software model envisages techno-

logical progress (growth in A) as expansion of the “repository of codes”, i.e., as the

development of new, better instructions allowing to produce higher output with a

11If in reality the sets of codes available to humans and AI are different, the discrepancy between

the measures of both sets can be captured by the factor ψ relative to h.
12Which implies that, in its basic form, the model abstracts from economic and legal constraints

on the diffusion of software, such as the protection of intellectual property rights.
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Table 1: Factors of Production and R&D

Hardware X

Human physical labor L = ζN

Non-programmable physical capital (1− χ)K

Programmable physical capital χK

Software S
Human cognitive work H = AhN

Pre-programmed software† Ψ = AψχK

Note: † includes AI algorithms.

given amount of hardware. These instructions can be applied to the tasks at hand

both by humans, deterministic pre-programmed code, and AI. This is intuitive:

technological progress may take the form of new abstract ideas, scientific theories,

systematically catalogued facts, codes specifying certain actions, or blueprints of

physical items; all this is information and not actual objects or actions, and it is

precisely this informational character that makes technologies non-rivalrous (Romer,

1990). Thus all technological progress is naturally modeled as software-augmenting.

In the hardware–software model, in contrast to the standard capital–labor model,

there is no room for discussion on the direction of technical change (Acemoglu, 2009)

– a property that is highly valuable from a reductionist point of view.

3 The Aggregate Production Function

3.1 Setup

The aggregate production function is a key element of any macroeconomic model,

and particularly so of any long-run growth theory. Since the 1950s (Solow, 1956,

1957), it has become commonplace to take capital K and labor L as the key inputs

of this function, and value added (or GDP) as its output Y . Furthermore, in the

temporal dimension it has become a very frequent, if not standard, practice to

assume labor-augmenting (Harrod-neutral) technical change, as in

Y = F (K,AL). (3)

This specification is naturally a simplification, as any production function is

(Temple, 2006); both K and L are obviously amalgamates of heterogeneous com-

ponents. The question is whether this simplified form is sufficient for capturing the

key macroeconomic facts. From the literature13 it becomes more and more apparent

that the standard treatment of inputs as in (3) may have been sufficient to model

13Such as Gordon (1990); Greenwood, Hercowitz, and Krusell (1997); Krusell, Ohanian, Ŕıos-

Rull, and Violante (2000); Caselli and Coleman (2006); Growiec (2012); McAdam and Willman

(2018).
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the classic Kaldor (1961) facts but fails in capturing the new facts, which emphasize

irreducible heterogeneity within the K and L factors (Jones and Romer, 2010).

The hardware–software production function proposed in this paper, following di-

rectly from equation (2), structures this heterogeneity so that it embraces both the

key historical macro facts and the incipient digital production technology using AI. It

also provides sharp implications for the distinction between skilled and unskilled la-

bor, “traditional” (non-programmable) physical capital and its programmable (com-

puter, robot, etc.) counterpart, mechanization and automation.

Using the concepts from the previous section, the aggregate production function

F can be formalized as:

Y = F (X,S) = F (ζN +K,A(hN + ψχK)), (4)

where Y is aggregate value added (or GDP). The standard replication argument

applies to this production function specification, implying constant returns to scale

with respect to X and S.

From the laws of thermodynamics, implying in particular that performing phys-

ical action requires expediting energy, it is expected that an essential fraction of

GDP must consist of material outputs, serving – at the very least – to sustain the

hardware (including human bodies) and allow it to work.

On historical evidence I assume that pre-programmed software can be deployed in

production processes only if the technology level A is high enough for programmable

hardware to exist (χ > 0). Furthermore, I posit that the skill level ψ of deterministic

pre-programmed software can be at best equal to ηh, where η ∈ (0, η̄) captures the

fraction of human skills that have been deterministically programmed into machines,

multiplied by a positive factor that ensures that human and computer cognitive work

is denominated in common units (η̄ denotes human-level performance). AI, in con-

trast, has the ability to learn from data and potentially self-improve its architecture;

thus with AI it cannot be precluded that ψ > ηh and even ψ � η̄h (superhuman

performance). In the following I assume that ψ̄ > η̄h̄, allowing for the scenario where

AI would eventually achieve superhuman performance.14 The model embraces the

possibility of full automation for two reasons: first, I exclude the case where ψ̄ is

prohibitively low, and second, I assume that with sufficient computing power χK,

all essential cognitive tasks are amenable to automation.15

Equations (2) and (4) signify that AI is viewed here just as (improved) com-

puter software and not as a separate production input. This is because machine

learning algorithms may allow drastic improvements in the applicability, efficiency,

14See the discussion of this assumption in Section 6.
15However, in a more general model with complex, multi-step tasks, human cognitive work can

become essential for generating output if at least one step of at least one essential task is not

automatable. Essentiality implies that there is no way around this particular step as well as no

possibility of substituting out the entire task.
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and versatility of software, but do not constitute a qualitative change in its function

as means of providing instructions to programmable hardware. Hence, the model

does not feature a separate AI revolution, and rather sees AI development as a mas-

sive boost to the Digital Revolution which already began with the early computer

hardware and software. In my view, AI is to the digital era like the development of

electricity and internal combustion engines was to the industrial era: a second wave

of key breakthroughs, forcefully accelerating the impact of the initial revolutionary

technological ideas on the economy and society (Gordon, 2016).

3.2 Economic Growth and Technological Change

Log-differentiating (4) with respect to time, I obtain the following Solow-type de-

composition of economic growth:

gY = πXgX + πSgS, (5)

where πX = ∂Y
∂X

X
Y

is the hardware share of output, and analogously πS = ∂Y
∂S

S
Y

is

the software share. By Euler’s theorem, under constant returns to scale we have

πX + πS = 1.

Decomposing (4) further, I obtain:

gY = πX [πLgN + πKgK ] + πS[πH(gh + gN) + πΨ(gψ + gχ + gK)] + πSgA, (6)

where – due to the assumption of perfect substitutability of the constituent compo-

nents of hardware and software – the shares are simply πL = L
X

, πK = K
X

, πH = H
S

and πΨ = Ψ
S

.

Equation (6) presents formally that there are multiple potential sources of out-

put growth in the hardware–software model. Each of them may have a different

asymptotic properties, though:

• Population growth gN increases the total amounts of both human physical and

cognitive work. If there is physical capital or pre-programmed software in the

economy, though, this impact is less than proportional to output growth and

thus, ceteris paribus, growth in output per worker (gY − gN) decreases with

population growth.

• Physical capital accumulation gK affects output growth both directly via the

hardware component and indirectly via the pre-programmed software compo-

nent (if πΨ > 0). It is subject to decreasing returns, but to a decreasing degree,

and as πK → 1 and πΨ → 1, the returns become asymptotically constant, al-

lowing for unbounded output growth (Jones and Manuelli, 1990).

• Growth in human capital per worker gh and growth in the AI skill level gψ

can be decisive in the short to medium run, but their impact on growth is by

definition transitory and bound to disappear as h→ h̄ and ψ → ψ̄.
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• Growth in the share of programmable hardware gχ illustrates the spread of dig-

ital technologies across the economy and the potential for automation (which

however also requires software). This factor can be important in the short

to medium run, but should not play any role over the long run because χ is

bounded between zero and one.

• Technological change gA, understood as the increase in technological knowl-

edge A, the size of the “repository of codes”, is conceptually independent of

human capital and AI skill accumulation. It adds to output growth with an

elasticity equal to the software share and can be potentially unbounded.

At this point, note that while the software-augmenting character of technological

change comes out as a very natural implication of the proposed conceptual frame-

work, this regularity stands in stark contrast to the discussions in the literature

on the direction of factor-augmenting technical change (e.g. Acemoglu, 2003; Jones,

2005; León-Ledesma, McAdam, and Willman, 2010). This is because the prevalent

concepts of aggregate production factors such as capital and labor conflate hardware

and software: technical change augments cognitive work but not physical labor, and

pre-programmed software but not the hardware on which it is run. The new frame-

work also resolves the conundrum whether technological progress is disembodied

or embodied in new investment goods (e.g. Gordon, 1990; Greenwood, Hercowitz,

and Krusell, 1997; Hercowitz, 1998): in itself, it is the disembodied information

that allows for more efficient actions. Nevertheless it may require investment in the

complementary hardware in order to deliver the desired effects for output.

3.3 Stages of Economic Development

Let us now trace how the hardware–software model can be used to capture the key

properties of production processes across the human history.

Stage 1. Pre-industrial production. In a pre-industrial economy, output was pro-

duced primarily in farming. At that stage of development, there was no significant

accumulation of productive capital K, and hence output was produced with a tech-

nology that could only use human (and animal) physical labor for performing the

physical actions. There was also no pre-programmed software Ψ. Setting K = 0 in

(4) yields the following simple form:

Y = F (X,S) = F (ζN,AhN) = N · F (ζ, Ah). (7)

Hence, under gross complementarity of hardware and software (actions and instruc-

tions), pre-industrial output per worker was bounded above due to the scarcity of

hardware.
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In fact, this result holds qualitatively also when assuming positive but bounded

K, so long as it remains small relative to ζN . Such a model would feature land, a

vital but fixed factor of agricultural production.

Stage 2. Industrial production. In an industrial economy, output was produced

in farming and industry. Following the Industrial Revolution (≈1800 CE onwards),

human (and animal) physical labor was gradually replaced with machines in a pro-

cess of mechanization of production. The physical actions were, however, depen-

dent solely on the instructions based on human cognitive work: there was no pro-

grammable hardware and no pre-programmed software yet. This implied a rising

demand for human cognitive skills, setting up an upward trend in wages (Galor,

2005) due to the relative scarcity of software. Setting χ = 0 in (4) yields:

Y = F (X,S) = F (ζN +K,AhN). (8)

The limit of full mechanization and skill satiation, K →∞ and h→ h̄, where h̄ is the

upper limit of human capital (skill) accumulation, implies Y = F (K, h̄AN). Hence,

under this specification we obtain – in the limit – the standard balanced growth

path result with gross complementarity of inputs and purely “labor-augmenting”

(though generally, software-augmenting) technical change (Uzawa, 1961; Acemoglu,

2003). K/N grows at the same rate as technological knowledge A.

Equation (8) naturally embraces the concept of capital-skill complementarity

(Krusell, Ohanian, Rı́os-Rull, and Violante, 2000; Caselli and Coleman, 2006; McAdam

and Willman, 2018): physical capital is complementary to skilled labor H but sub-

stitutable with unskilled labor L. It can be also made consistent with the standard

capital–labor specification of the production function Y = F (K,AN), but only in

the hypothetical case of all human work being of the cognitive type (ζ = 0). Then,

capital and labor would be naturally gross complements, as suggested by bulk of

the recent empirical literature (Klump, McAdam, and Willman, 2007, 2012; Mućk,

2017).

Stage 3. Digital production. In a digital economy, output is increasingly produced

in automated processes. Following the Digital Revolution (≈1980 CE onwards),

ongoing automation of production is observed: human cognitive skills are gradually

replaced by pre-programmed routines which scale with programmable hardware χK

and not with (working) population N . Skill-biased technical change gives way to

routine-biased technical change (Acemoglu and Autor, 2011; Autor and Dorn, 2013).

This is where we are now.

At a later stage of the digital era, however, case-based software is gradually

replaced with self-improving AI algorithms, allowing for multiple-fold increases in ψ

(Berg, Buffie, and Zanna, 2018). The formula (4) holds in its generality. The limit

of full automation implies

Y = K · F (1, Aψ̄χ̄), (9)
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where ψ̄ is the upper limit of AI skill accumulation and χ̄ ∈ (0, 1] is the limiting share

of programmable hardware in all physical capital as K → ∞. This specification

implies full automation of the production process in the limit, leaving no jobs in the

production sector to be performed by humans.

Equation (9) delivers an AK-type implication: there is long-run endogenous

growth is due to the accumulation of (programmable) hardware alone (Jones and

Manuelli, 1990; Barro and Sala-i-Martin, 2003). This result is obtained thanks to

two forces: (i) software expands proportionally with hardware, (ii) hardware and

software are gross complements, and thus in the long run hardware remains the

bottleneck of development. Although asymptotically constant, the pace of hardware

accumulation (and thus economic growth) may be nevertheless stupefying: global

volumes of computational capacity, data storage and data communication exhibit

doubling times between 1.5 and 3 years since the 1980s (Hilbert and López, 2011);

the costs of a standard computation are declining by 53% per year on average since

1940 (Nordhaus, 2017). What has been bringing growth down in the recent decades,

however, was the large share of “traditional” (non-programmable) capital, and –

crucially – lack of AI algorithms able to fully tap the available computing power.

Neither of these two constraints is guaranteed to persist into the indefinite future.

Note that with Cobb-Douglas technology or unbounded hardware-augmenting

technical change, the model would imply explosive growth with unbounded growth

rates and a finite-time singularity.

Hypothetical stage 4. Post-digital production. Under high to full automation

of production processes, programmable hardware based on silicon chips, χK, will

gradually become the bottleneck of further development. This will increase the in-

centives to invest in R&D directed towards radical innovations holding the promise

to eliminate this bottleneck. Such breakthrough technology would have to tap an

entirely new source of energy, fundamentally increase energy efficiency, or otherwise

massively improve unit productivity of programmable hardware. Among the proba-

ble scenarios, one could envision the arrival of disruptive nanotechnology, quantum

computing, massively improved solar power, or perhaps something yet unimagined.

Extrapolating past trends in information processing and data accumulation and ex-

pecting them to feed into R&D productivity (see the next section of this paper), it

is conceivable that such new breakthrough technology may arrive quite soon.

Formally, such an episode of “new mechanization” (one may imagine e.g., a

“nanobot revolution” or “quantum revolution”) may be modelled by introducing an

additional component to the hardware amalgamate, as in:

X = ζN +K + ωM, (10)

where M denotes the new form of hardware, and ω � 1 captures its unit productiv-

ity relative to K. This form of hardware must be programmable, so that AI could

12



scale with M and avoid becoming a growth bottleneck itself.

Long-run implications include gradual replacement of K-type hardware with M

and a permanent acceleration in growth. In fact, this additional acceleration in

hardware X accumulation may eventually lead to a new growth regime “with a

doubling time measured in days, not years.” (Hanson, 2000).

In a world with fully mechanized and automated production, a new form of

programmable hardware M and AI that is able to scale with M , in the limit of

K/M → 0 the aggregate production function becomes again linear:

Y = F (ωM,Aψ̄M) = M · F (ω,Aψ̄). (11)

This means that despite the new breakthrough and the acceleration, hardware re-

mains the bottleneck (i.e., key factor constraining the pace) of long-run growth.

3.4 Factor Shares

The assumption of gross complementarity of production inputs (as exemplified by

CES technology with σ ∈ (0, 1)) provides a clear-cut implication for factor shares:

factor income will be disproportionately directed towards the scarce factor. In con-

sequence, we should expect the following developments, all of which are empirically

testable and intuitively explicable.

Stage 1. Pre-industrial production. In a pre-industrial economy, setting aside the

(relevant) problem of increasing land scarcity because our analysis abstracts from

the role of raw materials in production, we observe an increasing portion of value

added being directed to “hardware” (physical labor) at the expense of “software”

(human knowledge) as A grows, with the hypothetical limit of zero software share

as A→∞ without an industrial revolution (with a steady K = 0).

Stage 2. Industrial production. The first stage of development of an industrial

economy features gradual mechanization of production: physical capital accumu-

lation systematically decreases the role of human labor in “hardware”. Given the

substitutability between capital and physical labor, unskilled labor shares go down

whereas capital shares go up. Assuming furthermore that (temporarily) the pace

of capital accumulation outruns technical change (growth in A), this is however ac-

companied by increasing output shares accruing to “software” (i.e., human cognitive

work) which thus becomes scarce, raising the skilled wage and the skill premium.

As the economy tends to a BGP, the hardware share stabilizes around some level

π̄X ∈ (0, 1). From then onwards the economy respects Kaldor’s facts (Kaldor, 1961).

Stage 3. Digital production. The first stage of development of a digital economy

features gradual automation of production: pre-programmed software and AI ac-

cumulation gradually decreases the role of human skilled labor in software. Given
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the substitutability of these two factors, skilled labor shares go down whereas pre-

programmed software and AI shares go up. This is where we are now.

Next, however, the model predicts that due to ongoing technological progress

hardware gradually becomes the bottleneck of the economy. Then the overall soft-

ware share begins to decline and, in the absence of a next technological revolution,

the hardware share tends to a hypothetical limit of unity. Note that over the long

run, factor remuneration goes increasingly to the owners of capital goods, in partic-

ular programmable hardware. In the limit, none of the remuneration goes to human

workers because human skills by then have been fully automated.

Hypothetical stage 4. Post-digital production. Perhaps the functional distribution

of income becomes less of an issue in a world where neither hardware nor software

requires any human input, but nevertheless one may observe that the episode of

“new mechanization” (replacement of K with M in hardware) would incur a dy-

namic that is partly similar to the one following the Industrial Revolution. Namely,

accumulation of M systematically decreases the role of K in hardware, so that the

share of K goes down whereas the share of M goes up. Next, if all software is able

to scale with M then its share is bound to remain low. A different scenario would

follow if software were not able to scale with M – then it would become scarce and

its share of output would increase.

4 The R&D Equation

4.1 Setup

Technological change due to purposeful R&D activities is widely acknowledged as a

key driver of long-run growth in output per worker in the industrial and early digital

era. Due to the non-rivalrous character of technological ideas, they act a source of

increasing returns to scale (Romer, 1986, 1990), allowing output to grow even when

the use of inputs is constant over time. The exact specification of the R&D process

at the macroeconomic level is however subject to dispute. In particular, and perhaps

somewhat surprisingly, the existing R&D-based growth literature almost unequivo-

cally assumes that researchers’ labor is the only input in the R&D process (Romer,

1990; Jones, 1995, 1999; Ha and Howitt, 2007). Alternatively, a few studies embrace

the “lab equipment” specification of the R&D process, conditioning R&D output on

overall R&D spending (Rivera-Batiz and Romer, 1991; Bloom, Jones, Van Reenen,

and Webb, 2017; Kruse-Andersen, 2017). In reality, however, productivity of the

R&D sector depends not just on the labor of researchers but increasingly also on

the services of R&D capital. Modern R&D capital may range from modest offices at

university campuses or computers at researchers’ laps to such exquisite machinery

as the Very Large Telescope (VLT) and the Large Hadron Collider (LHC).

14



Consistently with the hardware–software model, I postulate that R&D output is

a function of two inputs to the R&D process: hardware X and software S. Hardware

includes R&D capital alongside human physical labor. Software encompasses all the

sophisticated and ingenuous ideas supplied by scientists and technical personnel, as

well as – again – pre-programmed software and AI.

Intuitively, the difference between the production process and the R&D process

is that the latter tends to involve relatively less physical action and more sophis-

ticated instructions. R&D is also not bound by the thermodynamical requirement

that an essential fraction of its output must be material; in fact probably almost

all its output comes in the form of information. Yet, note, even pure thinking is

in fact computational action carried out in the thinker’s brain – so it needs some

hardware, too; and the further we go from genuinely abstract, philosophical reflec-

tion towards more applied R&D, the more actual physical action is necessary (e.g.,

laboratory experiments, survey data collection, model building, prototype testing,

etc.). In fact, the practicality and complexity of research equipment has under-

gone systematic, cumulative changes over the centuries. The difference in usefulness

of Ptolemy’s astrolabe, Galileo’s telescope, and the modern Very Large Telescope

(VLT) is breathtaking, and so is to think how early statisticians actually computed

correlations and ran regressions without relying on computer hardware.

This framework implicitly assumes that there is no qualitative difference between

human thought and computer software in digital-era R&D processes. In line with

Brynjolfsson and McAfee (2014) I hypothesize that ideation, creativity and intuition

represent sophisticated pattern recognition. Thus there is no theoretical argument

precluding the possibility that R&D will also be subject to gradual automation in the

digital era. For one thing, AI algorithms improve at a pace that is of the same order

of magnitude as hardware accumulation (which is subject to Moore’s law), Grace

(2013). Furthermore, in the recent decade we have witnessed a surge in breakthrough

results, ranging from autonomous vehicles and simultaneous language interpretation

to self-taught superhuman performance at chess and Go, following from the same

broad methodology of deep neural networks (deep learning), Tegmark (2017).

As of today, AI is already used in e.g., genome sequencing, not to mention web

browser engines, which are of enormous help to modern researchers. In the future,

the use of AI in R&D may revolutionize it by not just helping answer research

questions, but also ask new ones. Brynjolfsson and McAfee (2014) predict that

AI technologies will turn out decisive for growth dynamics in the near future by

developing “gradually, then suddenly”, fueled by their highly scalable character and

– potentially – ability to self-improve. Indeed, right before our eyes AI algorithms

are getting better and better at pattern recognition based on big data, classification,

categorization of various sorts of content, and making adaptive decisions in noisy,

variable environments – and they are already much faster than humans at all that.
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In line with the above discussion, I postulate that the knowledge accumulation

equation should also obey the general equation (2):16

Ȧ = γΦ(X,S) = γΦ(ζN +K,A(hN + ψχK)), γ > 0. (12)

It is assumed that Φ is increasing and concave in both factors, X and S. The func-

tion Φ should be understood as an idea production function which is active within

a certain technological paradigm. Observable technological progress then comes

from incremental innovations which, in turn, rely on radical innovations for new

research avenues to be opened (Kondratieff, 1935; Olsson, 2000, 2005; Growiec and

Schumacher, 2013). Even if there are “fishing out effects” within each technological

paradigm (decreasing returns to scale in Φ), opening new paradigms may rejuvenate

technological opportunity, allowing the parameter γ to go up.

4.2 R&D Across Stages of Economic Development

Let me now discuss how the overarching hardware–software framework specializes

to deal with the realities of consecutive eras of economic development.

Stage 1. Pre-industrial R&D. In a pre-industrial economy, R&D was carried out

by individual scholars (and possibly small research teams of their disciples). R&D

output was generated essentially from their thought and simple experiments, with

little or no aid of R&D capital. Setting K = 0 in (12) yields:

Ȧ = γΦ(X,S) = γΦ(ζN,AhN). (13)

Hence, under gross complementarity of hardware and software and assuming con-

stancy of γ, the pool of technological opportunity was gradually depleted and “ideas

were getting harder to find” (Olsson, 2005; Bloom, Jones, Van Reenen, and Webb,

2017). The model implies that in the absence of R&D capital, the knowledge incre-

ment Ȧ tends to a positive constant and the rate of technological progress Ȧ/A – to

zero.

Stage 2. R&D of the industrial era. In an industrial economy, R&D output

was produced increasingly in laboratories, specialized research units, and corporate

R&D divisions. More and more specialized machines were employed in order to

advance the state of knowledge. All physical actions were, however, dependent on

the instructions provided by skilled scientists and their personnel: there was no

16In order to better describe the early millennia of human history, equation (12) could be aug-

mented with knowledge depreciation. As the focus here is on the more recent centuries, after

the development of writing and the printing press, which made depreciation of aggregate human

knowledge negligible, I set this complication aside.
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programmable hardware and no pre-programmed software yet. Transforming (12),

the following form is obtained:

Ȧ = γΦ(X,S) = γΦ(ζN +K,AhN). (14)

In the limit of full mechanization and skill satiation, K →∞ and h→ h̄, the model

implies that Ȧ = γΦ(K, h̄AN), where h̄ is the upper limit of human capital (skill)

accumulation. Thus again “ideas are getting harder to find” (Ȧ/A decreases with

A).

Yet, if Φ exhibits constant returns to scale then thanks to R&D capital accumu-

lation the economy tends to an asymptotic BGP where K and A grow at the same

rate:

gA =
Ȧ

A
= γΦ

(
K

A
, hN

)
. (15)

Hence, in the counterfactual scenario of balanced growth without a Digital Revolu-

tion, increases in average skills h and R&D employment N tend to increase the pace

of technological progress only up to a point, after which it is pinned by the scarce

factor, K/A. R&D is the key source of growth and accumulation of R&D capital is

the underlying mechanism that allows to sustain it.

Stage 3. R&D in the digital era. In the early days of the digital era, such as the

contemporary times as of 2019, human research skills are increasingly augmented

with sophisticated R&D hardware. Moreover, some of the more tedious research

tasks already are gradually automated. This process may accelerate fast in the

future after AI algorithms become sufficiently advanced to contribute in such non-

structured, complex environments as cutting-edge R&D.

In the digital era, equation (12) holds in its general form. The limit of full

automation implies:

Ȧ = γΦ(K,Aψ̄χ̄K). (16)

If Φ exhibits constant returns to scale then again the economy tends to an asymptotic

BGP where K and A grow at the same rate:

gA =
Ȧ

A
= γΦ

(
K

A
,ψχK

)
. (17)

Hence, increases in AI skills ψ and the accumulation of programmable hardware χK

tend to increase the pace of technological progress but only up to a point, after which

it is pinned by the scarce factor, K/A. The hardware–software model implies that

it is the accumulation of programmable hardware that would eventually become the

unique source of long-run growth of a digital economy. In a world where software is

able to scale with hardware, technological progress ceases to be the key contributor

to growth – which it remains only as long as the overall supply of software is pinned

to the size of the human population.
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5 The Role of Automation for Aggregate Produc-

tion, R&D and Growth: A CES Example

Let me now provide a more detailed treatment of the impact of automation (and

particularly AI-driven automation) on production and R&D under the proposed

framework. To this end, I will specifically assume that both production functions,

F and Φ, take the normalized CES form (Klump, McAdam, and Willman, 2012),

whereas capital accumulation follows the standard equation of motion due to Solow

(1956). What follows is a two-sector growth model with two interlinked growth

engines, factor accumulation and R&D. Neither of them is able to drive long-run

growth alone: capital accumulation is not sufficient because of decreasing returns

under a fixed level of technology; and R&D is not sufficient because its operations re-

quire the deployment of R&D capital (unlike endogenous growth models à la Romer

(1990) or Jones (1995) where human cognitive work was the only essential factor in

R&D).

The model consists of the following equations:

X = ζN +K, (18)

S = A(hN + ψχK), (19)

Y = Y0

(
π0

(
uXX

uX0X0

)ξ
+ (1− π0)

(
uSS

uS0S0

)ξ) 1
ξ

, (20)

Ȧ = Ȧ0

(
γ0

(
(1− uX)X

(1− uX0)X0

)µ
+ (1− γ0)

(
(1− uS)S

(1− uS0)S0

)µ) 1
µ

, (21)

K̇ = sY − δK, (22)

where s ∈ [0, 1] is the savings rate, uX , uS ∈ [0, 1] are the shares of hardware and

software, respectively, allocated to the production sector, and (1− uX), (1− uS) are

the respective shares allocated to R&D. The parameter ξ < 0 captures the degree

of substitutability between hardware and software in production, and µ < 0 – in

R&D. The parameters with subscript 0 are normalization constants.

This framework allows me to provide a comparison of two polar scenarios: (i)

without any digital revolution (χ = 0), and (ii) with a digital revolution, eventually

leading to full automation. In both scenarios I will assume a constant population

size, a prediction that appears realistic over the long run: population projections

indeed suggest that global population will plateau within the next century.

Industrial-era economy without automation. In an economy without programmable

hardware and pre-programmed software, as the stock of capital tends to infinity

and as h → h̄ (growth in the average level of education flattens out), one may

approximate X ≈ K and S ≈ Ah̄N . Inserting these approximations into the system
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(18)–(22) and setting a constant population size N = N0 yields the following system

of equations describing the balanced growth path of the economy:

Y

A
=

Y0

A0

(
π0

(
uX
uX0

K

A

A0

K0

)ξ
+ (1− π0)

(
uS
uS0

h̄

h0

)ξ) 1
ξ

, (23)

g = g0

(
γ0

(
(1− uX)

(1− uX0)

K

A

A0

K0

)µ
+ (1− γ0)

(
(1− uS)h̄

(1− uS0)h0

)µ) 1
µ

, (24)

g = s
Y

K
− δ, (25)

Y

A
=

Y

K

K

A
. (26)

This is a four-equation system in four stationary variables: the growth rate g and

the three ratios, Y/A, Y/K and K/A. Additional calculus uncovers that the long-

run economic growth rate g depends on the key endogenous variables of the model,

s, uX and uS. The dependence of g on s is unambiguously positive, whereas growth

effects of the latter two variables are ambiguous.

Along the balanced growth path of the industrial economy without automation,

the economy respects Kaldor (1961) facts: the “great ratios” (K/Y , C/Y ) and

factor shares are constant.

Digital-era economy with full automation. As the stock of capital tends to infinity,

and χ → χ̄, ψ → ψ̄, one may approximate X ≈ K and S ≈ Aψ̄χ̄K, underscoring

that in the limit of full automation, production and R&D get totally decoupled from

the employed human population.17 Inserting these approximations into the system

(18)–(22) and letting A→∞ yields the following asymptotic balanced growth path

of this economy:

g =
Ẏ

Y
=
K̇

K
=
Ȧ

A
= sπ

1
ξ

0

(
uX
uX0

Y0

K0

)
− δ, (27)

Y

K
= π

1
ξ

0

uX
uX0

Y0

K0

, (28)

K

A
= γ

− 1
µ

0

(
1− uX0

1− uX

)
g

g0

. (29)

Hence, this scenario leads to an AK-type model of fully endogenous growth

(Jones and Manuelli, 1990; Barro and Sala-i-Martin, 2003). The accumulation of

programmable hardware becomes the unique engine of growth because it does double

duty once software is able to scale up to hardware, S ∝ K. The endogenous variables

positively affecting the long-run growth rate are (i) the savings rate s, and (ii) the

share of hardware in production uX . The allocation of software uS becomes irrelevant

in the limit because if software is able to scale with hardware, it is ultimately only

17Putting it more harshly, under full mechanization and automation humans become useless,

irrelevant for the economy (Harari, 2017).
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the hardware that constitutes the crucial growth bottleneck. For the same reason,

in the limit it does not pay to allocate any more hardware to R&D: the impact of

R&D on growth eventually vanishes.

Along the asymptotic balanced growth path of the digital economy with full

automation, the economy respects the Kaldor (1961) fact of constancy of the “great

ratios” (K/Y , C/Y ), but the software share falls to zero.

6 Discussion

6.1 Key Concepts and Misconceptions of the Digital Era

In the current paper I have carried out some baseline conceptual work, needed by

economic growth theory in order to achieve progress in modelling the realities of the

digital era. The key contribution of the proposed hardware–software model lies with

the formalization of production processes across all eras of economic development,

with specific focus on capturing the effects of the Digital Revolution. In particular,

it provides a conceptually consistent approach to delineating such key concepts –

that are sometimes confused in the literature – as mechanization, automation, ICT,

hardware, software, and AI (as well as: robots and robotization).

Viewed through the lens of the hardware–software model:

• Mechanization of production consists in replacing human (and animal) phys-

ical labor with machines (K in place of L). Large-scale mechanization is

observed since the Industrial Revolution. It applies to the mode of action

but not the instructions, which have been historically provided by humans,

according to their expertise and judgment.

• Automation of production consists in replacing humans with pre-programmed

software in providing instructions to machines (Ψ in place of H). Automation

pertains to cases where a task, previously involving human decisions, is car-

ried out entirely by machines without any human intervention. Automation

is observed since information technologies came into use as general purpose

technologies (Bresnahan and Trajtenberg, 1995). Routine tasks (both phys-

ical and cognitive) are typically the first to be automated (Autor and Dorn,

2013).

Historically mechanization preceded automation. Therefore the automation pro-

cesses of the digital era tend to affect tasks where no human labor is needed anymore.

This ordering is however not obligatory. A fun example of automation without mech-

anization is when you walk around town blindly following the instructions of your

GPS.
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• Information and communication technology (ICT) is a concept that is orthog-

onal to the hardware–software dichotomy because ICTs include both pro-

grammable hardware χ and pre-programmed software Ψ. They constitute

a breakthrough compared to non-programmable machines because they allow

to replace humans in providing instructions. Code, once programmed, can be

run multiple times, also concurrently on many machines, without the need of

any human intervention. Hence ICTs were necessary for initiating automation.

• Artificial intelligence (AI) is a special type of pre-programmed software that

has the ability to learn from data. In contrast to “traditional” software which

consists of a deterministic, fixed set of instructions (e.g., if–then loops), artifi-

cial intelligence embraces uncertainty and can improve its performance based

on experience and new information. This happens even under a static ar-

chitecture of the AI – though it is conceivable that AI may modify its own

architecture while heading towards self-improvement. Machine learning bears

similarity to human learning, but its advantage is that many networked pieces

of equipment can pool their data, whereas humans cannot. The development

of AI opens new opportunities for speeding up automation because AI allows

to substitute humans in non-routine tasks as well (Brynjolfsson, Rock, and

Syverson, 2017). According to Agrawal, Gans, and Goldfarb (2017), while

computers drastically lowered the costs of computing (arithmetic), AI drasti-

cally lowers the costs of prediction.

In light of the above discussion, it is a misconception to identify computers and

robots with their hardware (Benzell, Kotlikoff, LaGarda, and Sachs, 2015; Berg,

Buffie, and Zanna, 2018). Computers, robots, smartphones and other ICTs consist

both of their hardware and software. Their hardware can be productive and useful

only when provided with appropriate instructions, either from human operators or

pre-programmed software.

Another frequent misconception is to automatically associate AI with robots. AI

is software that can learn from data. This software may indeed provide instructions

to robots, but also to conventional computers, smartphones and other devices which

embody digital chips.

It is also rather problematic to identify AI development with automation (Aghion,

Jones, and Jones, 2017), because automation may proceed also without AI, as it has

been the case for decades e.g. in the auto industry, and AI – especially at ini-

tial stages of development – may be complementary to some human skills such as

judgment (Agrawal, Gans, and Goldfarb, 2017).

Automation also should not be conflated with mechanization. This is done, for

example, in the famous question “will humans go the way of horses?” (Brynjolfsson

and McAfee, 2014). The answer is: as far as human physical labor is concerned,
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humans have long went the way of horses; for cognitive tasks (for which horses are

of no use) this has not been the case, at least not yet. By the same token, it is

false comfort to say that the history of the Industrial Revolution teaches us that

when jobs are destroyed, new ones are bound to emerge. It only teaches us that

when physical labor is mechanized, additional workers will be demanded in cognitive

occupations; it tells us nothing about cognitive occupations being automated.

6.2 AI and the Future of Production and R&D

The role of AI in future production and R&D processes depends critically on the

value of ψ̄ relative to η̄h̄, i.e., the upper limit of AI skills relative to human skills.

Full automation will be possible only if AI would achieve superhuman performance

across a broad array of tasks and gain sufficient adaptability and versatility to be

able to endogenously expand the breadth of its expertise. Otherwise, there will be

a point at which automation must stop.

This caveat, in turn, depends on the answers to two following questions. First, is

ideation a sophisticated incarnation of pattern recognition or a qualitatively different

feature? Can AI be creative, imaginative and insightful in the way humans can be?

Preliminary evidence suggests that even some of the contemporary AI algorithms

can indeed be perceived as creative, e.g., in devising innovative strategies in chess

and Go (DeepMind’s AlphaZero, Silver, Hubert, Schrittwieser, et al., 2018), drawing

artistic pictures (Schmidhuber, 2009a), or composing music (Amper Music, IBM’s

Watson Beat, Google’s Magenta, AIVA). Arguments have also been formulated that

the lines between creativity, insight and complexity are rather arbitrary, further

favoring the case of a high ψ̄ (Dennett, 2017; Tegmark, 2017).

Second, how high are the returns to cognitive reinvestment in machine intelli-

gence? (Yudkowsky, 2013). How efficient will the future AI be in re-designing itself

and its environment in order to improve its cognitive capacity? Humans are in this

regard limited by our inability to rewire our brains, and so we circumvent this lim-

itation by increasingly relying on external memory, data collection equipment, and

computational power. We also increasingly pool our resources by working in ever

larger research teams whose members have increasingly specialized sets of skills. As

our knowledge set is growing but our brains are not, interdisciplinary “Renaissance

Men” are long gone (Jones, 2009). Unfortunately, speed and accuracy of our inter-

personal communication are far from perfect, and thus we may be missing plenty

of interdisciplinary insights. AI algorithms running on fast computers, in contrast,

communicate extremely fast and without error. They also by far surpass us in

terms of speed and serial depth of computation (Hanson and Yudkowsky, 2013). In

contrast to humans, machine intelligence is also (so far, theoretically) able to recur-

sively rewrite its code provided that it is able to prove that the rewrite is beneficial

(Schmidhuber, 2009b). All this points to a rather high ψ̄ and motivates the baseline
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parametrization used in the current paper. Nevertheless, thus far AI is markedly

lagging behind the human brain in terms of versatility and adaptivity. If this is

resolved, we may observe a rapid buildup of AI skills, and even an uncontrolled

intelligence explosion (Hanson and Yudkowsky, 2013; Bostrom, 2014). If not, then

perhaps ψ̄ is low and full automation is not possible.

6.3 Singularity?

The notion of an uncontrolled intelligence explosion naturally leads to the question

whether we are approaching a technological singularity (Kurzweil, 2005; Nordhaus,

2017; Aghion, Jones, and Jones, 2017). The answer depends on the precise definition

of singularity, though. On the one hand, the hardware–software model embraces the

possibility of a singularity in the sense of an “AI takeover”, when human cognitive

work is no longer required for production. At that moment, AI becomes better than

humans in everything, including inventing new tasks (Acemoglu and Restrepo, 2018)

and building AI. With a sufficiently high degree of substitutability between human

cognitive work and pre-programmed software, this may well appear in finite time.18

On the other hand, however, the model does not allow for a singularity understood

as a vertical asymptote in the level of GDP, i.e., arbitrarily high production in finite

time, which – given that a non-degenerate fraction of output must be material to

sustain the hardware – would be inconsistent with the laws of thermodynamics.

In sum, the hardware–software model expects a growth acceleration in the future,

but it also expects that its fruits will not necessarily benefit the humankind.

* * *

Future work on the hardware–software model should forge a link between the pro-

posed conceptual framework and general-equilibrium modelling of economic growth.

It is important to identify the equilibrium forces determining the extent of automa-

tion and to quantify the timing at which AI development becomes critical for eco-

nomic growth. One could also review alternative scenarios, such as the one where

R&D could be carried out without R&D capital or where AI software does not scale

proportionally to hardware. Another promising line of work would be to analyze

complex tasks within the hardware–software model in order to quantify the extent

to which human cognitive work and AI can be complementary on the run-up to full

automation.

18This has tremendous philosophical, political and even existential implications (see e.g. Hanson

and Yudkowsky, 2013; Bostrom, 2014; Harari, 2017).
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