International information flows, sentiments and cross-country business cycle fluctuations

Michał Brzoza-Brzezina, Jacek Kotłowski, Grzegorz Wesołowski

Warszawa, 31.01.2020

Outline

- Introduction
- 2 Empirical motivation
- Model and data
- 4 Findings
- Conclusions

Motivation

- Agents' sentiments affect business cycles
- Noted already long time ago: Pigou (1927); Keynes (1936)
- To a large extent ignored by structural business cycle models
- Recently more interest.

Literature

Theoretical:

- Beaudry and Portier (2006) and Barsky and Sims (2011) introduce technology news shocks into RBC/NK models
- Angeletos and La'O (2013) and Angeletos et al. (2014) introduce limited communication between agents → shocks to confidence have real effects

Empirical:

- Barsky and Sims (2011), estimate NK model with technology news shocks: over 50% of variance of consumption and investment explained
- Blanchard et al. (2013) consinder noisy signals about permanent productivity in NK DSGE model to show that sentiment accounts for 50% of consumption variability
- Kamber et al. (2017) VAR models for four developed, SOEs: technology news shocks explain between 6% (NZ) and 40% (UK) of output fluctuations
- Milani (2017) estimates a DSGE model with learning: sentiment fluctuations explain over 40% of business fluctuations in the United States

Motivation cont'd

- Important question: do international sentiment fluctuations explain business cycles in small economies?
- Why does it matter?
 - business cycles clearly spill over borders
 - but our models find it hard to explain its strength (Backus et al., 1992, Justiniano and Preston, 2010)
 - something is missing maybe confidence fluctuations?
- Evidence is scarce
 - Beaudry et al. (2011) technology news shocks can drive cross-country synchronization of cycles
 - Levchenko and Pandalai-Nayar (2019) Canadian business cycle is driven to a large extent by US sentiment shocks
 - Brzoza-Brzezina and Kotłowski (2018) Polish business cycle is driven by EA sentiment shocks "via air"

This paper

- Empirical motivation we show that sentiments travel fast between countries
- Structural approach: we propose a model of international spillovers of sentiment shocks
 - 2-country extension of the noise shock framework by Blanchard et al. (2013)
 - Agents in both countries face signal extraction problem
- Estimate the model to assess the importance of foreign noise shock for small open economy

Main findings

- US noise shock explains significant portion of US consumption:
 - in line with Blanchard et al. (2013)
 - around 30 % of the consumption in the US may be explained by the US noise shock.
- US noise shocks spill over to Canada:
 - on average 15 % of consumption in Canada may be explained by the US noise shock
 - less important for other macro aggregates
 - noise shocks of particular importance during sentiment breakdowns

Outline

- 1 Introduction
- 2 Empirical motivation
- Model and data
- 4 Findings
- Conclusions

Empirical motivation

- Our mechanism relies on sentiments spilling over borders faster then business cycles do.
- Is there any evidence thereof?
- We investigate the co-movements of sentiments and business cycles in 28 EU economies - tightly integrated in terms of trade and financial linkages
- We compare the strength of co-movement and the time lag for GDP and the economic sentiment indicator (ESI)
 - Quarterly data from Q1 1995 to Q2 2019
 - The cyclical components of GDP and ESI calculated using Christiano-Fitzgerald asymmetric filter
 - The cycle length from 6 to 40 quarters

The cyclical components of GDP and confidence indicator

The strength of co-movement with euro area aggregate

The shift in business cycle co-movement toward euro area aggregate

Empirical motivation - findings

- The correlation between confidence indicators stronger than between GDP fluctuations
- The transmission of confidence faster than of GDP for most EU economies
- Ergo: there must be extra channels of confidence transmission probably media etc.

Outline

- Introduction
- 2 Empirical motivation
- Model and data
- 4 Findings
- Conclusions

- ullet 2 countries: small (home, size ω) and large (foreign, size $1-\omega$)
- Households, capital, final and intermediate goods producers, exporters
- Capital adjustment costs, variable capital utilization
- Sticky prices and wages, local currency pricing
- Conventional monetary policy: Taylor-like rule
- Exogenous public spending

- ullet 2 countries: small (home, size ω) and large (foreign, size $1-\omega$)
- Households, capital, final and intermediate goods producers, exporters
- Capital adjustment costs, variable capital utilization
- Sticky prices and wages, local currency pricing
- Conventional monetary policy: Taylor-like rule
- Exogenous public spending

- ullet 2 countries: small (home, size ω) and large (foreign, size $1-\omega$)
- Households, capital, final and intermediate goods producers, exporters
- Capital adjustment costs, variable capital utilization
- Sticky prices and wages, local currency pricing
- Conventional monetary policy: Taylor-like rule
- Exogenous public spending

- ullet 2 countries: small (home, size ω) and large (foreign, size $1-\omega$)
- Households, capital, final and intermediate goods producers, exporters
- Capital adjustment costs, variable capital utilization
- Sticky prices and wages, local currency pricing
- Conventional monetary policy: Taylor-like rule
- Exogenous public spending

- ullet 2 countries: small (home, size ω) and large (foreign, size $1-\omega$)
- Households, capital, final and intermediate goods producers, exporters
- Capital adjustment costs, variable capital utilization
- Sticky prices and wages, local currency pricing
- Conventional monetary policy: Taylor-like rule
- Exogenous public spending

- ullet 2 countries: small (home, size ω) and large (foreign, size $1-\omega$)
- Households, capital, final and intermediate goods producers, exporters
- Capital adjustment costs, variable capital utilization
- Sticky prices and wages, local currency pricing
- Conventional monetary policy: Taylor-like rule
- Exogenous public spending

Households

• Households maximize their lifetime utility $U_{0,i}$ w.r.t. c_t , n_{jt} , $b_{H,t}$ and $b_{F,t}$,:

$$U_0 = E_0 \sum_{t=0}^{\infty} \beta^t \left[\log(c_t - hc_{t-1}) - \gamma \frac{1}{1+\varphi} n_t^{1+\varphi} \right]$$

subject to:

$$c_t + b_{H,t} + q_t b_{F,t} + t_t =$$

$$= R_{t-1} \pi_t^{-1} b_{H,t-1} + q_t R_{t-1}^* \Gamma_{t-1} \pi_t^{*-1} b_{F,t-1} + w_t n_t + d_t$$

and wage stickiness (Calvo).

Intermediate goods producers

- Operate under monopolistic competition
- Rent labor and capital and produce differentiated goods

$$y_{p,t}(i) = k_t(i)^{\alpha} (a_t n_t(i))^{1-\alpha} - \phi$$

• Set prices subject to stickiness assumption (Calvo) for the domestic and foreign markets.

Technology and noisy information

- Technology consists of 2 components: permanent and temporary
- Agents receive noisy signals about the permanent component

US	Canada
$a_t^* = x_t^* + z_t^*$	$a_t = (1-\lambda^{x}) x_t + \lambda^{x} x_t^* + z_t$
$\triangle x_t^* = \rho \triangle x_{t-1}^* + \epsilon_t^*$	$\triangle x_t = \rho \triangle x_{t-1} + \epsilon_t$
$z_t^* = \rho z_{t-1}^* + \eta_t^*$	$z_t = \rho z_{t-1} + \eta_t$
$s_{t}^{*} = x_{t}^{*} + \varepsilon_{s,t}^{*}$	$s_t = x_t + \varepsilon_{s,t}$

- Noise $(\varepsilon_{s,t}, \varepsilon_{s,t}^*)$ is a non-fundamental disturbance. It will be interpreted as shifts in sentiments
- Agents need to infer whether technology changed because of temporary or permanent shocks
- To this end they run a Kalman filter

Data, calibration, estimation

- Parameters: calibrated (well-established) and estimated (Bayesian estimation).
- 19 shocks. Most important: 2 noise shocks, 2 temporary productivity,
 2 permanent productivity.
- Sample: US and Canada, 1Q1960 1Q2014
- 13 time series used. For both economies: productivity, individual consumption, investments, wages, inflation, nominal interest rate.
 Plus real exchange rate.

Estimation of the model

- We estimate the full-information counterpart of the model as Blanchard et al (2013).
- Agents infer productivity components from the Kalman filter and treat them as "real" state variables.
- This is possible since in a linear model certainty equivalence holds (Baxter et al, 2010).
- Impulse responses, variance decompositions etc. in the same way.

Selected calibrated parameters

name	value
eta, discount rate CAN	0.995
β^* , discount rate US	0.995
η , home bias CAN	0.700
ω , size CAN	0.070
δ , depreciation rate CAN	0.025
δ^* , depreciation rate US	0.025
ξ , exchange rate elasticity w.r.t. foreign debt	0.0013

Selected estimated parameters

name	prior mean	post mean	90% HPD interval		prior type	prior std dev
λ^{\times} (weight of LE perm prod)	0.800	0.9556	0.9208	0.9916	beta	0.1000
autocorrel. prod. shock CAN	0.900	0.9448	0.9277	0.9599	beta	0.0500
autocorrel. prod. shock US	0.900	0.9678	0.9578	0.9774	beta	0.0500
std dev noise shock CAN	0.010	0.0063	0.0032	0.0095	invg	0.0010
std dev noise shock US	0.010	0.0094	0.0054	0.0141	invg	0.0010
std dev prod. shock CAN	0.005	0.0151	0.0141	0.0162	invg	0.0010
std dev prod. shock US	0.005	0.0235	0.0230	0.0239	invg	0.0010

Plan of the presentation

- Introduction
- 2 Empirical motivation
- Model and data
- 4 Findings
- 6 Conclusions

IRF - response to US permanent productivity shock

IRF - response to temporary productivity shock in the US

IRF - response to temporary productivity shock in Canada

IRF - response to US noise shock

Foreign noise shock: smoothed path

Variance decomposition: consumption growth in the US

Quarter	CAN pp	CAN tp	US pp	US tp	CAN noise	US noise
1	0.0	2.6	0.5	26.1	0.0	37.6
4	0.0	1.9	8.2	27.4	0.0	25.9
8	0.0	1.7	18.5	21.7	0.0	26.4
12	0.0	1.6	20.1	19.1	0.0	23.4
40	0.0	1.5	20.9	17.7	0.0	21.9

Variance decomposition: consumption growth in Canada

Quarter	CAN pp	CAN tp	US pp	US tp	CAN noise	US noise
1	0.0	16.5	0.4	4.4	0.0	16.9
4	0.0	14.2	4.2	4.2	0.0	15.0
8	0.0	12.0	7.4	3.5	0.0	14.5
12	0.0	11.4	7.8	3.3	0.0	13.8
40	0.0	11.1	8.1	3.4	0.0	13.3

Variance decomposition: GDP growth in the US

Quarter	CAN pp	CAN tp	US pp	US tp	CAN noise	US noise
1	0.0	0.0	0.1	16.1	0.0	1.8
4	0.0	0.0	0.9	14.4	0.0	1.8
8	0.0	0.1	2.6	14.1	0.0	2.5
12	0.0	0.1	3.4	13.9	0.0	2.5
40	0.0	0.1	4.3	13.6	0.0	2.5

Variance decomposition: GDP growth in Canada

Quarter	CAN pp	CAN tp	US pp	US tp	CAN noise	US noise
1	0.0	32.5	0.1	10.0	0.0	1.7
4	0.0	29.1	0.9	9.7	0.0	1.8
8	0.0	26.1	2.0	8.8	0.0	1.9
12	0.0	25.6	2.5	8.6	0.0	1.9
40	0.0	25.2	3.2	8.4	0.0	1.9

Role of noise variance

US noise shock contribution to consumption growth

Impact of US noise on consumption comovement (12q rolling correlation)

Conclusions

- We ask what role do confidence fluctuations play in driving business cycles and their international co-movement
- US noise shocks spill over to Canada:
 - on average 15 % of consumption in Canada may be explained by the US noise shock
 - less important for other macro aggregates
 - noise shocks of particular importance during sentiment breakdowns

Literature I

- Angeletos, George Marios, and Jennifer La'O (2013) 'Sentiments.' Econometrica 81(2), 739-779
- Angeletos, George-Marios, Fabrice Collard, and Harris Dellas (2014) 'Quantifying Confidence.' NBER Working Papers 20807, National Bureau of Economic Research, Inc, December
- Backus, David K, Patrick J Kehoe, and Finn E Kydland (1992) 'International Real Business Cycles.' Journal of Political Economy 100(4), 745–775
- Barsky, Robert B., and Eric R. Sims (2011) 'News shocks and business cycles.' Journal of Monetary Economics 58(3), 273-289
- Beaudry, Paul, and Franck Portier (2006) 'Stock Prices, News, and Economic Fluctuations.' American Economic Review 96(4), 1293–1307
- Beaudry, Paul, Martial Dupaigne, and Franck Portier (2011) 'Modeling News-Driven International Business Cycles.' Review of Economic Dynamics 14(1), 72–91
- Blanchard, Olivier J., Jean-Paul L'Huillier, and Guido Lorenzoni (2013) 'News, Noise, and Fluctuations: An Empirical Exploration.' American Economic Review 103(7), 3045–3070
- Brzoza-Brzezina, Michał, and Jacek Kotłowski (2018) 'International confidence spillovers and business cycles in small open economies.' NBP Working Papers 287, Narodowy Bank Polski, Economic Research Department
- Justiniano, Alejandro, and Bruce Preston (2010) 'Can structural small open-economy models account for the influence of foreign disturbances?' Journal of International Economics 81(1), 61–74
- Kamber, Günes, Konstantinos Theodoridis, and Christoph Thoenissen (2017) 'News-driven business cycles in small open economies.' Journal of International Economics 105(C), 77–89
- Keynes, J. M. (1936) The General Theory of Employment, Interest and Money (Macmillan)
- Levchenko, Andrei A., and Nitya Pandalai-Nayar (2019) 'TFP, News, and "Sentiments": The International Transmission of Business Cycles.' Forthcoming, Journal of the European Economic Association
- Milani, Fabio (2017) 'Sentiment and the U.S. business cycle.' Journal of Economic Dynamics and Control 82(C), 289-311
- Pigou, A.C. (1927) Industrial Fluctuations (Macmillan and Company, limited)

Estimated parameters

c	iranie	ter:	5				
_			post. mean	90% HPD	interval	prior	pstdev
	hh	0.500	0.5845	0.5682	0.6012	beta	0.1000
	hh_s	0.500	0.7595	0.7322	0.7861	beta	0.1000
	cap_theta	5.000	5.1772	4.4045	5.9554	norm	0.5000
	cap_theta_s	5.000	4.8040	3.9390	5.6351	norm	0.5000
	gamma_u2	0.150	0.0679	0.0237	0.1084	beta	0.0500
	gamma_u2_s	0.150	0.1518	0.1406	0.1626	beta	0.0500
	gam_r	0.700	0.8612	0.8464	0.8770	beta	0.1000
	gam_pic	0.100	0.1057	0.0830	0.1261	beta	0.0500
	gam_y	0.100	0.1969	0.1646	0.2234	beta	0.0500
	gam_r_s	0.700	0.8016	0.7772	0.8270	beta	0.1000
	gam_pic_s	0.100	0.0748	0.0519	0.0945	beta	0.0500
	gam_y_s	0.100	0.0133	0.0056	0.0205	beta	0.0500
	lambda_x	0.800	0.9556	0.9208	0.9916	beta	0.1000
	thetaH	0.750	0.7253	0.6567	0.7834	beta	0.1000
	thetaF	0.750	0.9806	0.9718	0.9891	beta	0.1000
	thetaH_s	0.750	0.4650	0.4261	0.5100	beta	0.1000
	thetaF_s	0.750	0.8827	0.8365	0.9350	beta	0.1000
	zetaH	0.750	0.7428	0.6743	0.8073	beta	0.1000
	zetaF	0.750	0.7448	0.6520	0.8329	beta	0.1000
	zetaH_s	0.750	0.6657	0.6274	0.7057	beta	0.1000
	zetaF_s	0.750	0.8141	0.7507	0.8646	beta	0.1000
	thetaW	0.750	0.9592	0.9567	0.9611	beta	0.0500
	zetaW	0.750	0.5608	0.5083	0.6113	beta	0.1000
	thetaW_s	0.750	0.9571	0.9429	0.9716	beta	0.1000
	zetaW_s	0.750	0.6267	0.5723	0.6950	beta	0.1000
	theta_muH_lag	0.500	0.1203	0.0727	0.1737	beta	0.1000
	theta_muH_s_lag	0.500	0.1126	0.0903	0.1408	beta	0.1000
	theta_muW_lag	0.500	0.6895	0.6175	0.7630	beta	0.1000
	theta_muW_s_lag	0.500	0.8172	0.7691	0.8640	beta	0.1000
	rho_x	0.900	0.9448	0.9277	0.9599	beta	0.0500
	rho_x_s	0.900	0.9678	0.9578	0.9774	beta	0.0500
	rho_i	0.700	0.4604	0.4381	0.4876	beta	0.0500
	rho_i_s	0.700	0.4085	0.3808	0.4317	beta	0.0500
	rho_muH	0.700	0.5455	0.5128	0.5743	beta	0.0500
	rho_muH_s	0.700	0.5604	0.5350	0.5852	beta	0.0500
	rho_muW	0.700	0.8626	0.8441	0.8839	beta	0.0500
	rho_muW_s	0.700	0.7591	0.7323	0.7871	beta	0.0500
	rho_rho					beta	
	sig_x	0.005	0.0151	0.0141	0.0162	invg	0.0010
	sig_x_s	0.005	0.0235	0.0230	0.0239	invg	0.0010
	sig_s	0.010	0.0063	0.0032	0.0095	invg	0.0100
	sig_s_s	0.010	0.0094	0.0054	0.0141	invg	0.0100 Inf
	sig_r	0.001	0.0024	0.0022	0.0027	invg	Inf
	sig_r_s	0.001	0.0023	0.0021	0.10025	invg	
	sig_i	0.010	0.2075	0.1879	0.1003	invg	Inf Inf
	sig_i_s sig_muH	0.010	0.2075	0.1879	0.2280	invg	Inf
	sig_muH s	0.010	0.0268	0.0192	0.0330	invg	Inf
	sig_muH_s sig_muW	0.010	0.0230	0.0142	0.0324	invg	Inf
		0.010	0.0080	0.0684	0.0984	invg	Inf
	sig_muW_s sig_rho	0.010	0.0080	0.0025	0.0144	invg	Int
	sig_rho sig c ME	0.010	0.0032	0.0027	0.0037	invg	0.0010
	sig_c_ME s	0.001	0.0008	0.0004	0.0013		0.0010
	sig_c_ME_s sig i ME	0.001	0.0037	0.0033	0.0040	invg	0.0010
	sig_i_ME sig i ME s	0.001	0.0002	0.0001	0.0003	invg	0.0010
	sig_i_ME_s sig_w_ME	0.001	0.0012	0.0004	0.0017	invg	0.0010
	sig_w_ME s	0.001	0.0093	0.0088	0.0097	invg	0.0010