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Abstract 

This paper presents an adaptive contagion mapping methodology (A-CoMap) to 

study the interbank network of euro area significant and less-significant institutions’ 

large exposures within the global banking system. We draw on a unique dataset 

composed by granular bank and exposure level information on 2,800 consolidated 

banking groups worldwide. The paper documents the spread of contagion by 

modelling banks and market’s reactions to possible distress and default events via 

solvency and liquidity risks within a multipolar regulatory environment. We show 

that banks’ behavioural responses may either increase or decrease the degree of 

stress to some specific banks, although on average they tend to mitigate contagion 

spillovers in the interbank market.  We use this methodology to assess the 

effectiveness in mitigating contagion of an increase in minimum capital 

requirements relative to an increase in capital buffers as well as to study the too-

many-too fail problem by simulating simultaneous multiple defaults and distress 

events. 
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”Solvency and liquidity are two conditions that all private 

organizations must always satisfy. Failure to satisfy either 

condition, or even coming close to failing, lead to action by 

others that affect profoundly the status of the organization” 

(Minsky, 1982: 146) 

“Since the crisis, regulation has become multi-polar. But the 

impact of this regime shift on analytical models and real-

world behavior remains largely uncharted territory. This 

defines a whole new, and exciting, research frontier.” 

(Haldane, 2015: 397).   

1. Introduction 

As the global financial crisis shook the role of the interbank market as the central provider of 

liquidity to the banking system, the post-crisis banking regulation has tried to bring back to 

normal the system’s behaviours and restore confidence. That lack of confidence among banks 

led to such behaviours as liquidity hoarding and fire sales, stigmatizing the entire financial 

system to the point of reshaping the structure of the banking network:  a star system with the 

central bank at the centre. The markets had been too deeply interconnected and opaque for 

ad-hoc interventions to forestall cascade effects due to contagion and successfully prevent 

transformation of risks from the idiosyncratic to systemic. 

Hence, market confidence is an endogenous self-fulfilling process determining winners and 

losers in the system as an on-off trigger. Various determinants interacting with binding 

regulatory requirements may signal to market participants the deterioration of an agent’s 

solvency and liquidity positions, causing common market reactions. 1  In turn, these 

behaviours might intensify liquidity problems of distressed banks and also affect non-

distressed banks, leading to possible financial market turmoil among the industry peers. This 

mechanism may spread quickly across agents, sectors and countries via bilateral linkages and 

the direct and indirect cross-holdings of assets. The understanding of the dynamics of 

contagion and the channels turning idiosyncratic risk into a systemic crisis is an essential step 

to set up effective prudential regulations, and thus curb risks to financial stability.  

In this vein, the paper focuses on the mechanisms underpinning the collapse of the interbank 

market by studying the role of confidence in triggering and exacerbating liquidity crisis and 

                                                
1 The nature of the signalling may vary considerably and it can be associated with a breach of a prudential 

requirement, negative earning news or a reputational shock. 
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fire sales. We construct the actual network of euro area significant and less-significant 

institutions’ large exposures and jointly model banks’ behaviours as adaptive agents within 

the global banking system. Hence, we study the role of regional domestic banks in amplifying 

contagion and how shocks to the periphery of the network may provoke system-wide losses 

to the core. 

In the survey of simulation methods, Upper (2011) identifies the absence of behavioural 

foundations as a major shortcoming in this literature. This refers to the observation that in 

many cases when a counterparty is in distress, counterparties can react by cutting credit lines 

or not rolling over debt instead of watching idly as has been assumed in many studies. The 

starting point of our analysis is the Contagion Mapping Model (CoMap) developed in (Covi 

et al., 2019).  It is augmented by modelling banks’ reactions to multiple distress events. Rule 

of thumbs and heuristics to model liquidity hoarding behaviours and fire sales mechanisms 

are developed upon the funding crisis framework of Kapadia et al. (2013) and the empirical 

evidence brought about by Acharya and Merrouche (2012). In this respect, we allow the 

breach of regulatory constraints on capital, liquidity and leverage requirements and capital 

buffers to play an active role in providing information to market participants and to trigger 

banks’ precautionary actions. This signalling mechanism is thus pre-defined by each bank’s 

regulatory thresholds, and it is endogenously derived since it is the result of the equilibrium 

behaviours of agents conditional to the initial shock (Freixas and Holthausen, 2005). 

Consequently, it is not only the distressed bank acting defensively, but other banks are 

allowed to respond to such a signal and withdraw short-term funding from the distressed 

entity, turning, potentially, an idiosyncratic shock into a system-wide liquidity crisis. In such 

a framework, a natural trade-off can be studied between improving the short-term liquidity 

position to the detriment of a higher likelihood of experiencing credit losses on the long-term 

part of the exposure lent to the distressed bank. The likelihood of one effect dominating the 

other depends on the additional amplification channels captured in the model. To this extent, 

we complement the framework by exploiting limits on the liquidity coverage ratio and 

leverage ratio, which, if breached, lead to liquidity hoarding and fire sales behaviours (Cont 

and Schaanning, 2017; Caballero and Simsek, 2013). Moreover, by accounting for interbank 

market contagion we assess losses due to a bank failure via counterparty credit risk 

(Eisenberg and Noe, 2001; Espinoza-Vega and Sole’; 2010 Rogers and Veraart, 2013).  

Hence, the modelling of the interplay between credit, liquidity and fire-sale risks jointly with 

the multi-polar regulatory environment makes our A-CoMap methodology a practical risk 
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assessment tool providing estimates of an entity’s degree of contagion and vulnerability 

within the euro area banking system.  

In achieving this, we construct, and so, rely on the most comprehensive and granular euro 

area centric dataset covering large exposures among 2.800 consolidated banking groups 

within the global banking system. In this respect, the analysis is not limited to the interbank 

network of euro area significant institutions, but includes less-significant institutions to 

investigate implications for euro area financial stability with a complete within-country 

network perspective. 2  This allows us to capture amplification effects arising from the 

domestic banking system and jointly model them together with international spillovers to 

study the complex interactions of a domestic network within a multi-country perspective. 

Next, we move a step forward in terms of analysing credit and liquidity risks since we model 

loss given default and liquidity shortfall parameters by exploiting granular exposure-specific 

information on collateral pledged and maturity structure. The network infrastructure is 

complemented with a heterogeneous set of individual banks’ characteristics retrieved and 

calibrated on ECB proprietary supervisory data, and ultimately parametrized as bank-specific 

parameters.  

We find that non-linearities in contagion spillovers arise, not only from the interaction of 

various contagion channels as shown by Kok and Montagna (2016), but also from the 

completeness of the network coverage, in our case by mapping shocks reverberating among 

and between euro area significant institutions, less significant institutions and non-euro area 

banks. Next, we find that liquidity hoarding behaviours triggered by a bank’s breach of 

regulatory requirements on average tend to mitigate contagion, although in some cases, 

depending on the source of the shock, it may also amplify it. Moreover, we find that 

increasing minimum capital requirements effectively reduce contagion, although the policy 

effectiveness varies depending on whether the increase is applied to minimum capital 

requirements or capital buffer requirements, on the size of the capital surcharge, as well as on 

the intrinsic characteristics of the bank. In the end, the paper show that contagion potential 

mimicking too-many-too-fail problem is as relevant as much as the too-big-too-fail problem. 

                                                
2  Other studies have exploited the interlinkages among SIs and LSIs but they missed the cross-country 

perspective (Purh et al. 2012; Craig and von Peter 2014; Craig et al. 2014; Veld and Van Lelyveld 2014; and 

Bargigli et al. 2015). In fact, they focused exclusively, due to the confidential nature and availability of the data, 

on the Austrian, German, Dutch and Italian interbank market, respectively. 
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The remainder of the paper is organized as follows. Section 2 presents the data set and 

illustrates the topology of the euro area interbank network of large exposures. Section 3 

illustrates the Adaptive Contagion Mapping (A-CoMap) methodology, while Section 4 

discusses the results and performs sensitivity analysis to the model parameters. Section 5 

concludes. 

2. Data 

The core of our data infrastructure is the large exposures dataset and based on ECB’s 

supervisory COREP C.27-28 templates. Precisely, this dataset tracks all euro area banks’ 

exposures higher than 10% of an institution’s eligible capital or larger than EUR 300 million, 

covering approximately 90% of euro area banks’ exposures vis-à-vis credit institutions. 3  

In this exercise, in order to capture additional contagion channels, previously limited to 

consolidated groups of euro area significant institutions (SIs) and global banks, we extend the 

interbank network to including euro area less-significant institutions (LSIs). This has the 

major advantage in increasing the number of interlinkages and, thus the complexity and 

volumes of the network by a factor of 7 and 2, respectively. Moreover, by exploiting the 10th 

largest funding sources template, COREP C.67, we complement the large exposure network 

with i) euro area banks’ funding sources from non-euro area banks and ii) euro area less-

significant institutions’ funding sources (LSIs) from euro area significant institutions (SIs), 

which otherwise wouldn’t be possible to capture with the large exposures data set alone.4 

Moreover, the large exposures network does not only capture debt contracts such as loans, 

but also derivative, equity, and off-balance sheet exposures on a direct and indirect 

counterparty basis.5 This brings a very comprehensive picture of the euro area interbank 

market within the global banking system.  

Table 1 presents the summary statistics of the interbank network of large exposures in Q4 

2017. It consists of 11.930 exposures and 2.4 Euro trillion of gross exposures, for a total of 

2.830 consolidated banking groups, of which 2.604 and 226 domiciled respectively within 

and outside the euro area. On the one hand, 25% of the exposures are from euro area SIs, 

                                                
3 For a detailed overview of the data infrastructure see Covi et al. (2019). 
4 The reason for this is exposures from significant institutions vis-à-vis less-significant institutions are mostly 

below the large exposures reporting threshold. 
5 Off-balance sheet exposures account for a small share of total exposures and since we model only on-balance 

sheet accountings we exclude them from this analysis. 
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71.5% from LSIs and 3.5% from non-euro area banks; on the other hand, the number of 

exposures towards the non-euro area banking sector takes a larger share close to 17.5%, 

compared to 56% towards SIs, and 26.5% towards LSIs. This is due to the construction of the 

dataset, since we exploit information from euro area reporting banks, and we lack the 

coverage of interlinkages among non-euro area banks. This is the reason why we define our 

analysis as a euro area centric perspective. 

Table 1: Interbank Network of Large Exposures 

 

Note: Amounts are expressed in billions of euros. Outstanding amounts as of Q4 2017. Gross amount minus 

exemptions is the reference metrics of this study. A threshold of 100.000 Euro to exposures before credit risk 

mitigation was applied. Exemptions are those amounts which are exempted from the large exposure calculation, 

whereas credit risk mitigations refer to the amounts adjusted for risk weights.   

However, in terms of Euro volumes, the picture radically changes. Euro area banks are 

exposed approximately by 1.85 Euro trillion in gross terms, of which 68% is vis-a-vis SIs. In 

this respect, 24% of credit exposures are held by non-euro banks, almost the same amount 

borrowed from euro area LSIs. In net amounts, that is, after deducting exemptions and credit 

risk mitigations6, non-euro area banks captured almost 44% of the counterparty credit risk, 

more than euro area SIs (43%) and LSIs (13%). To what may concern funding risk, funding 

sources from non-euro are banks represent only 5% of the total exposure amounts in gross 

terms, while euro area SIs and LSIs capture respectively 68% and 27% of the total. 

                                                
6  Exemptions refer to the part of exposure exempted from large exposure calculation, while credit risk 

mitigations refer to the part of exposure that is secured by collateral or a guarantee.  

Data Sample Network

Entities Total Total SI LSI Total GSIB REST

Consolidated Banking Groups 2830 2604 101 2503 226 23 203

Counterparties 1721 1520 94 1426 201 23 178

Reporting 2604 2553 101 2452 51 18 33

Number of Exposures

From 11931 11523 2990 8533 408 250 158

To 11931 9849 6663 3186 2082 1074 1008

Total Exposures Amount (Borrowed)

Gross Amount 2437 1853 1265 588 584 369 215

- Exemptions 1130 1041 732 309 89 27 62

Gross Amount minus Exemptions 1307 812 533 279 495 342 153

- Credit Risk Mitigations 438 329 159 170 109 87 22

Net Amount 869 483 374 109 386 255 131

Total Exposures Amount (Lent)

Gross Amount 2437 2310 1650 660 127 94 34

- Exemptions 1130 1110 665 445 20 18 3

Gross Amount minus Exemptions 1307 1200 982 218 107 76 31

- Credit Risk Mitigations 438 401 313 88 37 23 14

Net Amount 869 799 669 130 70 53 17

Euro Area Extra Euro Area
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In this respect, Figure 1 plots the euro area interbank network of large exposures in its 

entirety. In order to highlight the added value coming from the domestic relationships among 

significant institutions and less-significant institutions, we decide to assign to the edges the 

color of the source node, whose size is given by the sum of incoming and outgoing 

exposures. Therefore, the size of the node tends to over-emphasize euro area banks relative to 

non-euro area banks since the latter have only few outgoing exposures by construction. 

Nonetheless, US and UK banks appear to have sizeable shape of the nodes, and they are 

placed close to the nucleus of the network. This corroborates previous evidence brought in 

Covi et al. (2019) on the relevance of international spillovers within the euro area interbank 

network.  

Moreover, we can notice how the introduction of LSIs into the network highlights some 

important patterns for Germany, Italy and Austria. In fact, LSI cooperative and savings banks 

tend to define the periphery of the network by clustering around one specific entity with who 

creates an almost standalone network. This central entity, in turn, is the exclusive channel of 

connection between the periphery and the nucleus of the network. This network is 

characterized by a low density (0.001), an average path length equal to 3.5 and a diameter of 

9.7 Overall, we can state that the euro area interbank network of large exposures is based on a 

clear core-periphery structure. 

In the end, the core of our data infrastructure - the network of large exposures - is framed by 

granular bank and exposure level information retrieved from other supervisory templates 

allowing us to exploit the relevance of banks’ and exposures’ heterogeneity in the 

transmission and degree of contagion. In fact, a detailed picture of banks’ balance sheet 

allows us to more precisely determine the solvency and liquidity conditions of a bank and 

model its reaction vis-à-vis other banks given respectively its level of capital surplus above 

minimum capital requirements and its holding of HQLA and non-HQLA assets relative to 

credit and/or liquidity shocks. In addition, exposure level information on collateralized 

amounts and maturity structure contributes to clarify banks’ relationship among each other 

given that they are the reflection of counterparty risk. 

 

                                                
7 Only 0.1% of all possible links are present. Average path length and dimeter refer respectively to the average 

graph-distance between all pairs of nodes and to how far apart are the two most distant nodes. 
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Figure 1: Euro Area Interbank of Large Exposures 

 

 

Note: The size of the nodes captures the weighted degree of interconnectedness. The colors of nodes are 

clustered by country of origin, the thickness of the flows summarizes the value of the exposures in EUR billions. 

The color of the flows refers to the source of the node’s color capturing the lender perspective. 

Source: COREP C.27-C.28. 
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3. Adaptive Contagion Mapping Methodology 

3.1 Model Set-up and Behavioral Mechanics 

This section describes the augmented balance-sheet based CoMap methodology to including 

the heuristics and behavioral mechanics of bank and market reactions to counterparty distress 

and/or default events determining liquidity and credit shocks in the euro area interbank 

market.  

Few studies have investigated the interaction between credit and liquidity risks in a system-

wide context via modelling banks’ and market’s reactions conditional to multiple regulatory 

events. The key innovation in the modeling framework is thus the behavioral liquidity 

hoarding component modelled accordingly to a set of heuristics retrieved from empirical 

studies. This feature leads to a shift to a more organic system architecture that takes into 

account banks’ ability to react to changes in their own solvency and liquidity conditions and 

respond pro-actively to other banks’ changing conditions. Hence, modeling the ability of 

banks’ behavioral responses results in a complex set of equations, which is stock-flow 

consistent across banks’ balance sheets.  In addition, a key ingredient and innovation is the 

modelling of information flows, essential feature defining the sequencing of banks’ 

responses. In this regard, a mixture of heterogeneous and endogenous signals linked to the 

breach of regulatory thresholds exogenously defining solvency, liquidity and leverage 

distress and default events, is used to render banks’ private information public, which in turn 

determines banks’ actions8. Overall, we define six possible events related to the breach of 

regulatory binding constraints (Table 2). 

A bank may be considered in solvency default (i) if the bank breaches minimum capital 

requirements also defined default threshold (𝑐𝑖
𝑑𝑓
), i.e. if the difference between the capital 

base (𝑐𝑖) and the sum of experienced losses due to credit and liquidity risks (𝐿𝑖) is smaller 

than (𝑐𝑖
𝑑𝑓
). Next, a bank may be considered into liquidity default (ii) when it is not able to 

fulfill its payment obligations, i.e. if the discounted pool of non-HQLA assets available for 

sales (1 − 𝛿𝑖)(𝜃𝑖)  is smaller than the funding shock experienced (𝜏𝑖) after deducting the 

                                                
8 In the asymmetric information literature, the signaling of counterparty credit risk or solvency probability is 

modelled as an exogenous component in Broecker (1990) and Flannery (1996), while as endogenous in Rochet 

and Tirole (1996), Freixas and Holthausen (2005), and Heider et al. (2015) among others.  



10 

amount of HQLA above the LCR requirements9. Hence, we assume that the bank may not 

decrease its pool of HQLA assets below its LCR requirement. This default assumption holds 

only if the run-off rate of deposits and the haircut of the assets assumed in the LCR given a 

30-day distress scenario is consistent with the actual scenario10. In the sensitivity analysis, 

this assumption will be relaxed. In the end, a bank may be considered in leverage default (iii) 

when a bank faces a tight binding leverage ratio constraint below 1%.11  

These events may take place jointly and the “bank reaction” would imply a default on its 

bilateral exposures consisting of its counterparties facing losses equal to the unsecured 

amount of the exposure, thereby recovering only the collateralized part. Moreover, in case the 

default event takes place directly without passing by a distress situation, the bank would be 

able to withdraw the short-term funding amount. However no funding withdrawal from other 

banks is allowed. Therefore a defaulted bank is assumed to have a first-move advantage, it 

acts before all other banks in the network realizes the sudden event. This implies that the 

counterparties of the defaulted bank will write-off both the short-term and long-term 

unsecured part of the exposure. It follows that, 𝒵  is the complete set of all banks in the 

network, whereas 𝒴 represents the set of banks which face a solvency (i), liquidity (ii) and/or 

leverage (iii) default condition. 

Up to now, we have assumed that banks are privately informed about their short-term 

solvency, liquidity, and leverage conditions, and this asymmetric information impedes 

counterparties of a defaulted bank to trigger a bank run before experiencing losses on both 

their short and long term exposures. This is the case when a large and sudden shock pushes 

one or more banks directly into default. However, when the size of the shock is not large 

enough to trigger a default, a bank may still get into temporary distress. In this case, the 

distressed bank has still the possibility to take recovery actions in order to reduce its distress 

level, and at the same time, other banks may reduce their exposures vis-à-vis the distressed 

                                                
9 It is assumed that HQLA assets can be pledged to the central banks in exchange of liquidity. This feature 

captures the accommodative stance of central banks during period of distress, and allows to mimic the change in 

network structure towards a star-system as described in Gai et al. (2011). 
10 When the run-off rate of deposits or the haircut applied in the LCR are larger than the actual, our model 

should over estimate contagion and amplification effects due to funding shocks, vice versa when the LCR 

scenario is milder than the actual, we should under estimate contagion. 
11 The required leverage ratio is meant to make sure that banks get into regulatory monitoring before they 

actually become insolvent. However, there might be a critical level of leverage ratio for which the bank is 

actually impaired.  
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bank. In this regard, we introduce three distress thresholds, respectively targeting solvency, 

liquidity and leverage requirements.  

A bank may be considered in solvency distress (iv) if the difference between the capital base 

(𝑐𝑖) and the losses incurred (𝐿𝑖) is smaller than the required minimum capital and buffer 

requirements, also called distress threshold (𝑐𝑖
𝑑𝑠) . This event forces the distress bank to 

engage in a precautionary withdrawal of short-term funding from other banks in the network. 

This behavioral dynamic is consistent with Acharya and Merrouche (2012)’s empirical 

investigation on UK banks’ hoarding behaviors during periods of financial distress such as 

the financial crisis. In this respect, they found that banks with higher funding and solvency 

risk hoarded more liquidity and they did that for precautionary reasons against potential 

funding risks so as to build-up a liquidity buffer. Always for precautionary reasons, banks 

may also hoard liquidity in anticipation of a market breakdown (Heider et al., 2015; Diamond 

and Rajan, 2011). Moreover, the breach of the required capital buffer imposes on the 

distressed bank the prohibition to pay out dividends, thus signaling to market participants the 

distress situation and the increased counterparty risk. Other banks are assumed to respond 

defensively and so to reduce their exposure vis-à-vis the distressed bank by the short-term 

amount.12 This type of triggering event may be interpreted also as a reputational shock or a 

Stigma. For instance, when a bank is perceived riskier than others, i.e. in distress, a run on the 

bank may be triggered (Acharya and Merrouche, 2012; Armantier et al. 2010). The intuition 

behind this market reaction is that banks are forward-looking and prefer to limit the amount 

of losses they will face in case of a counterparty default. The combined sequence of events 

may improve (deteriorate) the bank’s liquidity position depending on whether the bank is a 

short-term net liquidity provider (taker) in the network. Ultimately, 𝒟 represents the set of 

banks which meet the solvency distress condition.  

In a different case, a bank may experience a liquidity shock (funding withdrawal) which 

forces the bank to pledge HQLA assets to the central bank to meet its liquidity needs and thus 

maintaining its business portfolio. If the shock is big enough to exhaust the HQLA liquidity 

buffer (𝛾𝑖) so that the liquidity coverage ratio becomes binding, the bank is considered to 

being in liquidity distress (v). A liquidity distressed bank is assumed to not roll-over a share 

                                                
12 Another common behaviour in the interbank market in response to a higher counterparty risk is the increase in 

the borrowing rate at which the distress bank refinances itself from the other banks.   
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of the short-term provision of interbank loans in order to replenish the HQLA buffer up to a 

safe zone here defined as 110% of the liquidity coverage ratio.13 In this situation, no market 

reaction is supposed to take place since the bank is neither liquidity constrained nor in 

solvency distress. However, in case the combined liquidity amount recovered from the 

HQLA buffer and the funding withdrawal is not enough to cover the funding shortfall, the 

bank is allowed to sell non-HQLA financial assets at a discount rate (fire sales) to fulfill the 

incoming liquidity needs. ℛ  represents the set of banks which meet the liquidity distress 

condition. 

Table 2: Mechanisms of Interbank Contagion 

 

Note: ST funding withdrawal refers to the short-term exposure amount. HQLA buffer refers to the surplus of 

HQLA assets above the minimum LCR ratio. Pool of assets refers to the amount of non-HQLA financial assets 

available for sale. 

By experiencing fire sale losses on the trading book or credit losses on bilateral exposures 

due to a counterparty failure, the capital base (𝑐𝑖) may reduce to the point that the leverage 

ratio becomes binding. In such a case, the bank is considered to being in leverage distress 

(vi). A leverage distressed bank is assumed to sell HQLA assets at market price or to 

withdraw the short-term exposures in order to reduce its volumes of operations (deleveraging 

process) to the point that the leverage ratio becomes unbinding. However, this event signals 

to market participants and industry peers an increased counterparty risk (as previously 

motivated), thereby triggering a market reaction of short-term funding withdrawal. If the 

bank has already exhausted the HQLA liquidity buffer and is facing funding withdrawal, the 

                                                
13 The liquidity coverage ratio becomes binding when the ratio between the HQLA buffer and net funding 

outflows is below 100%.  
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bank is likely to end-up in a deleveraging spiral of non-HQLA assets leading to a default. ℒ 

represents the set of banks which meet the leverage distress condition. 

Overall, all distress and default events can take place simultaneously. Among distress events, 

market reactions in solvency and leverage distress are not additive since they suppose the 

very same action. This is true also for all default events. On the contrary, bank reactions as in 

the case of a liquidity and leverage distress or a solvency and leverage distress may be 

additive, while a solvency and liquidity distress is not, since the complete withdrawal of 

short-term funding in the former state overrules the partial withdrawn of short-term funding 

in the latter state.    

The outcome of such individualistic behaviors among distressed and non-distressed banks 

aimed at improving a bank’s own short-term position may lead to a bad equilibrium.  In fact, 

a liquidity distress bank may face funding withdrawals because other banks may turn into a 

liquidity distress situation given the initial reaction of the distressed bank. Therefore, we are 

able to capture how an idiosyncratic shock may become a system-wide crisis via market 

reaction or because a bank reaction may trigger autonomously another distress event.  

In this regard, a key feature of the modelling framework is the sequencing of banks’ actions 

and responses conditional to the set of information available to bank prior acting. Hence, it 

follows the mapping of the flows of funds among banks’ balance sheet according to the set of 

rules described in Table 2. 

3.2 Balance Sheet Dynamics: Credit Losses 

The initial set-up of the model is based on the CoMap methodology developed in Covi et al. 

(2019) starting with the following stylized balance sheet identity of bank i: 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑘𝑗 + 𝑎𝑖 = 𝑐𝑖 + 𝑑𝑖 + 𝑏𝑖 + ∑ 𝑥𝑗𝑖𝑗                                                                                                            (1)  

where 𝑥𝑖𝑗
𝑘  stands for bank i's claims of (instrument) type k on bank j, 𝑎𝑖  stands for other 

assets, 𝑐𝑖  stands for capital, 𝑏𝑖  is wholesale funding (excluding interbank transactions), 𝑑𝑖 

stands for deposits, and 𝑥𝑗𝑖
𝑘  stands for bank i’s total obligations vis-à-vis bank j, or 

conversely, bank j’s claims on bank i. Moreover, 𝒵 is the complete set of all banks in the 

network, whereas 𝒴 represents the set of banks which face a solvency, liquidity or leverage 

default condition.  



14 

Banks that experience at least one type of failure (insolvency, illiquidity or leverage-driven), 

they are assumed to default on all their obligations to other banks. As a result, creditor banks 

incur losses on their claims to varying degrees depending on the nature and counterparty of 

their exposures. We capture this heterogeneity by incorporating exposure-specific loss-given-

default rates14. In response to a subset (𝓨 ⊂ 𝓩) of banks defaulting on their obligations, bank 

i’s losses are summed across all banks 𝒋 ∈ 𝓨 and claim types 𝒌 using exposure-specific loss-

given default rates, 𝝀𝒊𝒋
𝒌 , corresponding to its claim of type k on bank j, 𝒙𝒊𝒋

𝒌 . 

∑ ∑ 𝜆𝑖𝑗
𝑘 𝑥𝑖𝑗

𝑘
𝑘              ∀𝑖 ∈ 𝒵, 𝑤ℎ𝑒𝑟𝑒 𝜆𝑖𝑗

𝑘
𝑗∈𝒴 ∈ [0,1]                                                                                         (2)  

To simplify notation, we aggregate all exposures across types (k) for any given pair of 

counterparties while using the average loss-given-default rate weighted by the share of each 

exposure types between them. 

𝐶𝑟𝑒𝑑𝑖𝑡 𝐿𝑜𝑠𝑠𝑒𝑠:  ∑ 𝜆𝑖𝑗𝑥𝑖𝑗 , ∀𝑖 ∈ 𝒵,         𝑤ℎ𝑒𝑟𝑒 𝜆𝑖𝑗𝑗∈𝒴 ∈ [0,1]                                                                   (3)  

The total losses are absorbed by bank i's capital while the size of its assets is reduced by the 

same amount.  

∑ 𝑥𝑖𝑗𝑗∈𝒵\𝒴 + [𝑎𝑖 + ∑ (1 − 𝜆𝑖𝑗)𝑥𝑖𝑗𝑗∈𝒴 ] = [𝑐𝑖
0 − ∑ 𝜆𝑖𝑗𝑥𝑖𝑗𝑗∈𝒴 ] + 𝑑𝑖 + 𝑏𝑖 + ∑ 𝑥𝑠𝑖𝑠 , ∀𝑖 ∈ 𝒵                (4)  

The recovered portion of the bank’s defaulted claims is kept as highly liquid, increasing its 

HQLA and therefore liquidity surplus, 𝜸𝒊: 

𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑆𝑢𝑟𝑝𝑙𝑢𝑠:   𝛾𝑖
′ = 𝛾𝑖

0 + ∑ (1 − 𝜆𝑖𝑗)𝑥𝑖𝑗𝒋∈𝓨            ∀𝑖 ∈ 𝒵                                                              (5)  

We also track the impact of a bank h’s default on its own balance sheet. The collateralized 

(recovered by the counterparty) portion of bank h’s obligations are deducted from its assets, 

while the uncollateralized portion (written off by the counterparty) is transferred to bank h’s 

other liabilities. 

∑ 𝑥ℎ𝑗𝑗 + [𝑎ℎ − ∑ (1 − 𝜆𝑠ℎ)𝑥𝑠ℎ𝑠 ] = 𝑐ℎ + 𝑑ℎ + [𝑏ℎ + ∑ 𝜆𝑠ℎ𝑥𝑠ℎ𝑠 ]  ∀  ℎ ∈ 𝒴                                            (6)  

Since bank h is potentially subject to other failed banks’ defaulting on their obligations, 

incorporating Equation (4) into Equation (6) leads to: 

                                                
14 For the calibration of the model parameters see Appendix A. 



15 

∑ 𝑥ℎ𝑗𝑗∈𝒵\𝒴 + [𝑎ℎ + ∑ (1 − 𝜆ℎ𝑗)𝑥ℎ𝑗𝑗∈𝒴 −∑ (1 − 𝜆𝑠ℎ)𝑥𝑠ℎ𝑠 ] = [𝑐ℎ − ∑ 𝜆ℎ𝑗𝑥ℎ𝑗𝑗∈𝒴 ] + 𝑑ℎ +

[𝑏ℎ + ∑ 𝜆𝑠ℎ𝑥𝑠ℎ𝑠 ]                    ∀ℎ ∈ 𝒴                                                                                                                 (7)  

Banks that are under liquidity or leverage distress starting with the knowledge of their 

liquidity (𝜂𝑖
0) or deleveraging (𝜑𝑖

0) needs update their information set based on changing 

conditions (credit default and funding withdrawals) within the same round. Therefore, their 

optimization decision and the ultimate impact on their balance sheets are formulated upon 

culmination of the default and withdrawal events.  

Hence, we define two new variables these banks monitor as part of their information set. 

Banks under liquidity distress, 𝓡 ⊂ 𝓩, update their liquidity replenishment needs, 𝜼𝒊, as the 

recovered assets kept in highly liquid form reduces the amount needed to bring their HQLA 

to a more desirable level.  

𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑁𝑒𝑒𝑑𝑠:   𝜂𝑖
′ = 𝜂𝑖

0 −∑ (1 − 𝜆𝑖𝑗)𝑥𝑖𝑗𝑗∈𝒴            ∀𝑖 ∈ ℛ                                                                 (8)  

As for the banks under leverage-related distress 𝓛 ⊂ 𝓩, there are two offsetting effects on 

their deleveraging needs. While the decline in the capital base due to losses associated with 

the credit default further deteriorates their leverage ratio, the reduction in their total assets 

due to writing-off of a portion of the credit exposure improves the ratio. Overall, their 

deleveraging needs 𝝋𝒊, in terms of the amount of assets they would need to wind down can 

be expressed as:  

𝐷𝑒𝑙𝑒𝑣𝑒𝑟𝑎𝑔𝑖𝑛𝑔 𝑁𝑒𝑒𝑑𝑠:   𝜑𝑖
′ = 𝜑𝑖

0 − ∑ 𝜆𝑖𝑗𝑥𝑖𝑗𝑗∈𝒴 + 1 �̂�⁄ (∑ 𝜆𝑖𝑗𝑥𝑖𝑗𝑗∈𝒴 )           ∀𝑖 ∈ ℒ                            (9)  

Where �̂� represents the leverage ratio bank i aims to achieve by deleveraging. For a bank h 

under leverage distress that also defaults on its credit obligations, its deleveraging needs are 

further reduced by the collateral that was recovered by its counterparties and hence: 

𝐷𝑒𝑙𝑒𝑣𝑒𝑟𝑎𝑔𝑖𝑛𝑔 𝑁𝑒𝑒𝑑𝑠:  𝜑ℎ
′ = 𝜑ℎ

0 + (1 �̂�⁄ − 1) (∑ 𝜆ℎ𝑗𝑥ℎ𝑗𝑗∈𝒴 ) − ∑ (1 − 𝜆𝑠ℎ)𝑥𝑠ℎ 𝑠  ∀ℎ ∈ ℒ ∩ 𝒴    (10)  

3.4 Balance Sheet Dynamics: Funding Withdrawal 

Banks that experience at least one type of failure (insolvency, illiquidity or leverage-driven) 

also withdraw all short-term funding from their counterparties. Moreover, banks that are in 

solvency distress (breach of capital buffer) 𝓓, partake in precautionary withdrawal of short-

term funding. We thus introduce an exposure-specific funding shortfall rate, 𝝆𝒋𝒊, reflecting 

the maturity structure of the wholesale funding bank i receives from bank j. Then, the funding 
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shortfall bank i faces when a subset of banks  (𝓨 ∪ 𝓓) ⊂ 𝓩 , withdraw funding can be 

expressed: 

𝐹𝑢𝑛𝑑𝑖𝑛𝑔 𝑊𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑎𝑙𝑠: ∑ 𝜌𝑗𝑖𝑥𝑗𝑖, ∀𝑖 ∈ 𝒵, 𝑤ℎ𝑒𝑟𝑒 𝜌𝑗𝑖𝒋∈(𝓨∪𝓓) ∈ [0,1]                                              (11)  

Since multiple funding withdrawal calls are made in this framework including those that are 

based on optimization by banks under liquidity and leverage distress, banks consider total 

funding shortfalls through culmination of events:  

𝐹𝑢𝑛𝑑𝑖𝑛𝑔 𝑆ℎ𝑜𝑟𝑡𝑓𝑎𝑙𝑙𝑠:  𝜏𝑖
′ = 𝜏𝑖

0 + ∑ 𝜌𝑗𝑖𝑥𝑗𝑖 , ∀𝑖 ∈ 𝒵, 𝑤ℎ𝑒𝑟𝑒 𝜌𝑗𝑖𝑗∈(𝒴∪𝒟) ∈ [0,1]                               (12)  

For banks under liquidity distress, the funding shortfalls add to their liquidity replenishment 

needs: 

𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑁𝑒𝑒𝑑𝑠:    𝜂𝑖
′′ = 𝜂𝑖

′ + ∑ 𝜌𝑗𝑖𝑥𝑗𝑖𝑗∈(𝒴∪𝒟)                              ∀𝑖 ∈ ℛ                                            (13)      

On the flipside, these funds contribute towards liquidity surplus of the withdrawing banks:  

  𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑆𝑢𝑟𝑝𝑙𝑢𝑠:   𝛾ℎ
′′ = 𝛾ℎ

′ +∑ 𝜌ℎ𝑖𝑥ℎ𝑖𝑖∈𝒵           ∀ℎ ∈ (𝒴 ∪ 𝒟)                                                     (14)   

Moreover, if these banks happen to be simultaneously under liquidity distress, they reduce 

their liquidity replenishment needs: 

𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑁𝑒𝑒𝑑𝑠:   𝜂ℎ
′′′ = 𝜂ℎ

′′ − ∑ 𝜌ℎ𝑖𝑥ℎ𝑖𝑖∈𝒵             ∀ℎ ∈ ℛ ∩ (𝒴 ∪ 𝒟)                                               (15)  

Until now, other banks played a passive role as distressed banks defaulted on their 

obligations and/or withdrew funding from them. It is assumed that banks have some, albeit 

limited, foresight or given asymmetric information they adopt precautionary hoardings. They 

pre-emptively withdraw short term funding (or do not rollover funding) from banks that are 

under solvency or leverage distress (𝓓 ∪ 𝓛) ⊂ 𝓩. Then, the funding shortfall faced by bank i 

when all banks withdraw funding from it can be expressed: 

∑ 𝜌𝑗𝑖𝑥𝑗𝑖, ∀𝑖 ∈ (𝒟 ∪ ℒ), 𝑤ℎ𝑒𝑟𝑒 𝜌𝑗𝑖𝑗∈𝒵 ∈ [0,1]                                                                                            (16)  

This increases their total funding shortfall as: 

𝐹𝑢𝑛𝑑𝑖𝑛𝑔 𝑆ℎ𝑜𝑟𝑡𝑓𝑎𝑙𝑙𝑠:   𝜏𝑖
′′ = 𝜏𝑖

′ + ∑ 𝜌𝑗𝑖𝑥𝑗𝑖, ∀𝑖 ∈ (𝒟 ∪ ℒ)𝑗∈𝒵  ∌ ( 𝑗 ∈ (𝒴 ∪ 𝒟))                              (17)  

𝑤ℎ𝑒𝑟𝑒   𝜏𝑖
′ = 𝜏𝑖

0 + ∑ 𝜌𝑗𝑖𝑥𝑗𝑖 , ∀𝑖 ∈ 𝒵,    𝜌𝑗𝑖𝑗∈(𝒴∪𝒟) ∈ [0,1]    

Also, adding to the replenishment needs, if these banks are simultaneously facing liquidity 

distress: 
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𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑁𝑒𝑒𝑑𝑠:   𝜂𝑖
𝑖𝑣 = 𝜂𝑖

′′′ + ∑ 𝜌𝑗𝑖𝑥𝑗𝑖𝑗∈𝒵     ∀𝑖 ∈ ℛ ∩ (𝒟 ∪ ℒ)                                                         (18)   

On the flipside, these funds contribute towards liquidity surplus of the withdrawing banks:  

𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑆𝑢𝑟𝑝𝑙𝑢𝑠:  𝛾𝑖
′′′ = 𝛾𝑖

′′ +∑ 𝜌𝑖ℎ𝑥𝑖ℎℎ∈𝒟∪ℒ                               ∀𝑖 ∈ 𝒵                                             (19)  

While decreasing the liquidity replenishment needs: 

𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑁𝑒𝑒𝑑𝑠:   𝜂𝑖
𝑣 = 𝜂𝑖

𝑖𝑣 − ∑ 𝜌𝑖ℎ𝑥𝑖ℎℎ∈𝒟∪ℒ              ∀𝑖 ∈ ℛ                                                         (20)  

Having updated their information sets based on the default and distress related shocks, next, 

banks that are under leverage distress make an optimizing decision to bring their leverage to 

an acceptable level. In this setup, we assume that deleveraging happens through reducing the 

balance sheet, rather than raising capital. Effectively, banks trim their assets by prioritizing: 

(first) using liquidity surplus; (second) selling off HQLA pledged to the central bank; and 

(third) withdrawing funding from their large exposure counterparts, all while reducing their 

liabilities by equal amounts. The first and second choices affect the internal balance sheet 

dynamics of a bank while the third option involves a decision that will impact the liquidity, 

and potentially solvency of other banks. In order to derive the leveraged bank’s optimal 

decision, we define a new variable that captures the aggregate of remaining short-term claims 

from all counterparts that bank i can potentially withdraw: 

𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑆ℎ𝑜𝑟𝑡 𝑇𝑒𝑟𝑚 𝐶𝑙𝑎𝑖𝑚𝑠:   𝜋𝑖 = ∑ 𝜌𝑖𝑗𝑥𝑖𝑗𝑗∈𝒵           ∀𝑖 ∈ ℒ                                                       (21)  

The other remaining variable needed for the optimization decision relates to the amount of 

HQLA pledged to the central bank for funding needs defined as 𝜷𝒊 for bank i. Then, bank i 

determines the usage of the three options mentioned above as a function of its total funding 

shortfall, deleveraging needs, liquidity surplus, pledged HQLA to the central bank, and 

potentially withdrawable counterparty claims. Starting with the liquidity surplus:  

𝛾𝑖
′𝑣 = {

𝑚𝑎𝑥 {0, 𝛾𝑖
′′′ −𝑚𝑖𝑛{(𝛽𝑖

0 −𝜑𝑖
′), 𝜏𝑖

′′}} ,     𝑖𝑓 𝜏𝑖
′′ ≤ 𝛽𝑖

0 + 𝜋𝑖 

0,                                                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
          ∀𝑖 ∈ ℒ                                  (22)  

Then, the change in the amount of HQLA pledged to the central bank is determined as 

follows: 

𝛽𝑖
′ = {

𝑚𝑎𝑥{0, 𝛽𝑖
0 + 𝜏𝑖

′′ −𝜑𝑖
′ },          𝑖𝑓 𝜏𝑖

′′ ≤ 𝛽𝑖
0 + 𝜋𝑖 

𝑚𝑎𝑥{0, 𝛽𝑖
0 + 𝛾𝑖

′′′ + 𝜋𝑖 − 𝜑𝑖
′ },            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

          ∀𝑖 ∈ ℒ                                                     (23)  
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Finally, bank i determines its withdrawal rate, 𝝎𝒊
 , the portion of short-term claims that it 

finds optimal to withdraw equally from each counterparty: 

𝜔𝑖
 = {

𝑚𝑖𝑛 {1,𝑚𝑎𝑥 {0,
𝑚𝑎𝑥{𝜑𝑖

′−𝛽𝑖
0,𝜏𝑖
′′}−𝛾𝑖

′′

𝜋𝑖
}} , 𝑖𝑓 𝜏𝑖

′′ ≤ 𝛽𝑖
0 + 𝜋𝑖 

1,                                                                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   ∀𝑖 ∈ ℒ                                        (24)  

As a result, the total funding shortfall of other banks, bank j, that face withdrawals from 

leverage-distressed banks increase proportional to the withdrawal rate: 

𝜏𝑗
′′′ = 𝜏𝑗

′′ + ∑ 𝜔𝑖
 𝜌𝑖𝑗𝑥𝑖𝑗, ∀𝑗 ∈ 𝒵𝑖∈ℒ                                                                                                               (25)  

For liquidity-distressed banks, their replenishment needs would also increase similarly: 

𝜂𝑗
𝑣′ = 𝜂𝑗

𝑣 +∑ 𝜔𝑖
 𝜌𝑖𝑗𝑥𝑖𝑗

𝑖∈ℒ
          ∀𝑗 ∈ ℛ                                                                                              (26) 

Last in the chain, liquidity-distressed banks face the same set of choices leverage-distressed 

banks do though their information set differs slightly. Liquidity-distressed banks make their 

optimal decisions based an updated information set on own replenishment needs, total 

funding shortfalls, liquidity surplus, pledged HQLA to central bank and potentially 

withdrawable counterparty claims. The total amount of potentially withdrawable counterparty 

claims available to bank i is updated as follows: 

𝜋𝑖 = ∑ 𝜌𝑖𝑗𝑥𝑖𝑗𝑗∈𝒵           ∀𝑖 ∈ ℛ                                                                                                                        (27)  

They determine how the liquidity surplus changes in response as follows: 

𝛾𝑖
𝑣 = 𝑚𝑎𝑥{0, 𝛾𝑖

′𝑣 − 𝜏𝑖
′′′, 𝛾𝑖

′𝑣 − 𝜏𝑖
′′′ +𝑚𝑖𝑛{𝜂𝑖

𝑣′, 𝜋𝑖}}        ∀𝑖 ∈ ℛ                                                             (28)  

Then, the change in the amount of HQLA pledged to the central bank is determined as 

follows: 

𝛽𝑖
′′ = 𝛽𝑖

′ +𝑚𝑖𝑛{𝜏𝑖
′′′, 𝛾𝑖

′𝑣 + 𝜋𝑖}          ∀𝑖 ∈ ℛ                                                                                                (29)  

Finally, bank i determines its withdrawal rate, 𝝎𝒊
 , the portion of short-term claims that it 

finds optimal to withdraw equally from each counterparty: 

𝜔𝑖
 = 𝑚𝑖𝑛 {1,𝑚𝑎𝑥 {0,

𝜂𝑖
𝑣′

𝜋𝑖
}}   ∀𝑖 ∈ ℛ                                                                                                           (30)  

As a result, total funding shortfall of other banks, bank j, that face withdrawals from 

leverage-distressed banks increase proportional to the withdrawal rate: 
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𝜏𝑗
′𝑣 = 𝜏𝑗

′′′ + ∑ 𝜔𝑖
 𝜌𝑖𝑗𝑥𝑖𝑗 , ∀𝑗 ∈ 𝒵                                                                                                               (31)𝑖∈ℛ   

This concludes all funding shocks that could take place in a single round.  

A bank is pushed toward a fire sale when its funding shortfall exceeds surplus liquidity 

available to it. At this point, all banks consolidate their positions based on a series of liquidity 

shocks and determine whether their positions imply a fire-sale and if so how much. The 

amount of remaining assets available to the bank, 𝜽𝒊, sets an upper threshold to how much of 

the remaining liquidity shortage can be sustained with the fire sale proceeds after accounting 

for haircuts proportional to a discount rate, 𝜹𝒊. As a result, this costly deleveraging amounts 

to the sale of assets: 

𝑚𝑎𝑥 {0,𝑚𝑖𝑛 {𝜃𝑖,
1

1−𝛿𝑖
(𝜏𝑖
′𝑣 − 𝛾𝑖

𝑣)}}       ∀𝑖 ∈ 𝒵,   𝑤ℎ𝑒𝑟𝑒 𝛿𝑖 ∈ [0,1]                                                       (32)  

In addition to the earlier credit shock, the losses due to the fire sale are absorbed fully by 

bank i's capital:  

𝑐𝑖
′ = 𝑐𝑖

0 − ∑ 𝜆𝑖𝑗𝑥𝑖𝑗 − 𝛿𝑖 ∗ 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 {𝜃𝑖,
1

1−𝛿𝑖
(𝜏𝑖
′𝑣 − 𝛾𝑖

𝑣)}}𝑗∈𝒴     ∀𝑖 ∈ 𝒵                                        (33)  

The firesales lead to a contraction in bank i’s assets:  

𝑎𝑖
′ = 𝑎𝑖

0 + ∑ (1 − 𝜆𝑖𝑗)𝑥𝑖𝑗𝑗∈𝒴 −  𝑚𝑎𝑥 {0,𝑚𝑖𝑛 {𝜃𝑖,
1

1−𝛿𝑖
(𝜏𝑖
′𝑣 − 𝛾𝑖

𝑣)}}        ∀𝑖 ∈ 𝒵                               (34)  

The other variables are also updated based on how bank i met the total funding shortfalls: 

𝛾𝑖
𝑣′ = 𝑚𝑎𝑥{0, 𝛾𝑖

𝑣 − 𝜏𝑗
′𝑣}               ∀𝑖 ∈ 𝒵                                                                                                       (35)  

𝛽𝑖
′′′ = 𝛽𝑖

′′ +𝑚𝑖𝑛 {𝜏𝑖
′𝑣 , 𝛾𝑖

𝑣′}           ∀𝑖 ∈ 𝒵                                                                                                      (36)  

𝜃𝑖
′ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 {𝜃𝑖

0, 𝜃𝑖
0 −

(𝜏𝑖
′𝑣−𝛾𝑖

𝑣)

1−𝛿𝑖
}}           ∀𝑖 ∈ 𝒵                                                                                 (37)  

These last capital and liquidity positions of all banks are compared against the specific 

thresholds in order to determine whether any new banks face distress and/or default 

condition(s). If there are new banks, the exercise will continue to another round. Otherwise, 

the contagion cycle terminates and all the relevant outputs are generated.  

In the end, the algorithm mechanics works in the following way. At the outset of the exercise, 

the event or the combination of events underlying the scenario is prescribed. The initial round 
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is triggered by these events. At the end of the round, the solvency, liquidity or leverage 

positions of the banks are reevaluated to determine whether the contagion has caused 

additional distresses or defaults in the network. If so, the exercise continues to the next round 

and this cycle continues until there are no new distresses or defaults in the system. Moreover, 

capital depletion as well as liquidity tightening continue even after a bank experiences 

default. This allows us to capture the full extent of contagion as well as its self-inflicting 

aspect as the defaults can take place in a range and due to different dynamics.  

4. Results 

4.1 Main Findings 

In this section we unveil the outcome of the A-CoMap methodology by presenting contagion 

and vulnerability indexes conditional to an initial default event for 2830 consolidated banking 

groups15. As long as the international coverage of the interbank network (extra-EA banks) is 

relevant in capturing the cross-border dimension of contagion potential (Covi et al., 2019), 

the composition of the network is key in assessing amplification effects arising from the 

structure of the banking system. Precisely, the inclusion of euro area LSIs matters for 

assessing the transmission of domestic shocks to euro area SIs, which, in turn may 

reverberate further across institutions and borders. Hence, we jointly model them together 

with international spillovers to study the complex interactions of a domestic network within a 

multi-country perspective.   

We start by reporting the breakdown of contagion potential by type of institutions (Table 3), 

i.e. the share of losses each category of banks induces and experiences from the other groups 

of banks. GSIBs are those banks that induce most losses to the global banking system, almost 

31.9% of the total. Moreover, shocks coming from non-euro area banks are the most 

detrimental for EAGSIBS, respectively 17.5% from GSIBs and 8.6% from OSIBs so as 

confirming the finding previously discussed. Next, euro area significant institutions account 

for 23.3% of total induced losses, EAGSIB banks for 22.4%, non-euro area banks other than 

GSIB for almost 12.4%, and less significant institutions for 10%. Hence, LSIs direct 

contribution to overall contagion is non-negligible although limited, especially given that 

                                                
15  The results are based on the bank-specific and exposure-specific calibration of the model parameters 

following Covi et al. (2019) and they are reported in Appendix A.  In Appendix B a bank-specific breakdown 

of the results is provided. 
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LSIs, in terms of units, are almost 88% of the banking sector. To what may concern the loss 

absorption or vulnerability, we can notice that 15.6% of the total losses of the system is 

experienced by LSIs, of which 7% as direct impact from SIs. These incoming and outgoing 

contagion spillovers imply primarily that SIs’ contagion is amplified indirectly via the LSI 

network with substantial heterogeneity across banks. 

Table 3: Contagion Matrix 

 

Note: Note: Each row reports the share of losses induced by each bank category in % of total losses. Columns 

identify the share of losses experienced by each bank category in % of total losses. The share of experienced 

losses of GSIBs and OSIBs banks are small given the limited exposure coverage. 

In this respect, Figure 2 compares contagion potential among the top-10 euro area banks 

across three network structures, respectively the “global network” reporting the baseline 

estimates for the complete interbank bank market, the “international network” composed by 

only large domestic and non-euro area banks (excluding the LSI sample), and a “domestic 

network” composed by only domestic euro area banks (excluding international banks). For 

comparative purposes, we present the contagion index at global scale (not only limited to 

euro area losses) for which we keep the denominator fixed equal to the amount of capital of 

the full system. 

Overall, we see some important patterns underlining the added value of modelling these three 

dimensions jointly: SIs, LSIs and international banks. First of all, the losses induced by the 

top-10 euro area banks in the “global network” are 52% higher than those reported for the 

“international network”, and 22% higher than those computed from the domestic network 

alone. Hence, most of the amplification effects are generated from within the domestic 

network since it is quite unlikely that an SI default would trigger additional failures in the 

international network, while it is more likely that an SI default would trigger second round 

effects in the domestic network.  

TYPES EAGSIB SI LSI GSIB OSIB ToT

EAGSIB 8.0 8.7 3.4 2.2 0.1 22.4

SI 5.7 5.9 7.0 4.0 0.7 23.3

LSI 1.9 3.9 1.8 2.0 0.4 10.0

GSIB 17.5 8.0 2.6 3.7 0.1 31.9

OSIB 8.6 2.6 0.8 0.3 0.1 12.4

ToT 41.8 29.1 15.6 12.2 1.4 100
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Moreover, it is clearly visible the presence of heterogeneity in terms of contagion potential 

among the top-10 banks across network structures. By comparing the domestic network and 

the international network with the network composed by SI only, we can notice respectively 

the importance of banks’ exposures via-a-vis LSIs and non-euro area banks. For instance, by 

including the “domestic network” the contagion potential of two SIs increases by a factor of 5 

and 4 respectively relatively to the “SI network”. Although the limited coverage of non-euro 

area banks’ exposures, there is also a bank in the top-10 that is sensibly more exposed 

towards non-euro area banks than within the domestic network. In the end, by comparing  

amplification effects due to the interaction of the domestic network with the international 

network, we can see that contagion potential is not additive, thereby confirming the presence 

of non-linearities arising from the composition of the network. Remarkably, the interaction 

among network structures may also lead to a reduction of contagion potential. This is due to 

the fact that liquidity hoarding behaviors may increase the resilience of weak nodes, thereby 

reducing domino effects in the system. The following section will dig deeper into this 

modelling feature. 

Figure 2: Contagion Risk Contribution of Network Coverage 

 
Note: Contagion Index refers to total capital losses to all banks in percent of entire banking system’s total 

capital. 

4.3 Impact of Market Reaction to Contagion 

The adaptive CoMap model presented in this paper imposes certain behavioral rules 

determining how banks react to shocks. The framework allows to study whether 
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precautionary and hoarding behaviors of banks in times of financial market distress may lead 

to amplified or mitigated effects. In order to assess these effects, we run a counterfactual 

exercise without modelling liquidity hoarding behaviors conditional to the realization of a 

distress event. This is similar to assume that banks have only partial information on 

counterparty risk, and they are not able to act preemptively. Figure 3 summarizes the 

findings by reporting for each exercise respectively the total number of default and distress 

events across all simulations, respectively Panels (a) and Panel (b).16 

Overall, when we include liquidity hoarding behaviors, the number of defaults and distress 

events decrease by 14 and 209 units, respectively. This implies that allowing banks to 

withdraw the short-term part of the exposures when a counterparty is in distress is a powerful 

mechanism in mitigating contagion. Nevertheless, heterogeneous effects are present, and in 

some simulations liquidity hoarding behaviors increase the level of stress to some nodes in 

the network. Overall, the mitigating effects seem to outweigh the amplifying ones. 

Figure 3: Impact of Behavioral Rules 

Panel (a): Default Events                 Panel (b): Distress Events 

 

Note: X-axis reports number of default/distress events with the model including behavioral rules, while Y-axis 

reports the number of default/distress events with the model without behavioral rules. At each point of the X-

axis there may be one or multiple events taking place.  

 

 

 

                                                
16 Unique number of default/distress events refers to the fact that banks may be simultaneously defaulting or 

being in distress due to multiple distress conditions taking place. For instance a bank may be in solvency and 

liquidity distress at the same time. If this is the case, we avoid double-counting and we consider only one 

distress event. 
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4.4 Assessing the Trade-off Between Rising Capital Requirements and Capital Buffers 

In this section we aim to test whether a capital surcharge affecting minimum capital 

requirements (MCR) is more effective in curbing contagion than a capital surcharge affecting 

capital buffer requirements (CBR). According to our knowledge, this is the first attempt in 

the literature of banking regulation which tries to quantify this effect. This is possible within 

our methodological framework since a breach of minimum capital requirements lead to 

different reaction than a breach of the capital buffers.  

The exercise consists in three counterfactual exercises assuming a homogeneous increase 

across all banks in the sample of, respectively minimum capital requirements (MCR – 

Exercise 1) and capital buffer requirements (CBR – Exercise 2). Then we also compare these 

outcomes with a counterfactual exercise assuming an equal split among the two requirements 

summing to the capital surcharge (MIX – Exercise 3). In the end, the same amount of the 

capital surcharge is added to the capital base so as to assume that banks target a constant 

capital surplus (ks) relatively to the threshold affected whether it is the default threshold 

(𝑐𝐷𝐹)  or the distress threshold (𝑐𝐷𝑆) , i.e a constant distant to the threshold. These 

assumptions lead to equation (39) and equation (40)17. 

Exercise 1, in which the capital surcharge is applied to minimum capital requirements, 

implies that banks have a constant distant to the default threshold (𝑐0
𝐷𝐹) used throughout the 

paper, i.e. a capital surplus (𝑘𝑠1
𝐷𝐹) above the default threshold equal to 𝑘𝑠0

𝐷𝐹. Nevertheless, the 

distant from the distress threshold  (𝑐0
𝐷𝑆) increases up to (𝑘𝑠1

𝐷𝑆) making banks less likely to 

get into distress relative to the baseline results. Contrary, Exercise 2, in which the capital 

surcharge is applied to capital buffer requirements, implies that banks have a constant distant 

to the distress threshold (𝑐0
𝐷𝑆) used throughout the paper, i.e. a capital surplus (𝑘𝑠2

𝐷𝑆) above the 

distress threshold equal to 𝑘𝑠0
𝐷𝑆. Nevertheless, the distant from the default threshold  (𝑐0

𝐷𝐹) 

increases up to (𝑘𝑠2
𝐷𝑆) making banks less likely to get into default relative to the baseline 

results. In the end, Exercise 3 lies between the two exercises, with banks having a larger 

distant to both the default (𝑐0
𝐷𝐹) and distress (𝑐0

𝐷𝑆) thresholds than in the baseline case.  We 

need to note that an increased capital base would affect also the distant to the leverage distress and 

                                                
17 See Appendix D for a mathematical derivation. 



25 

default thresholds, making a bank less likely to get into leverage distress or default. However, this 

effect is common across all exercises18. 

𝑘𝑠2
𝐷𝐹 > 𝑘𝑠3

𝐷𝐹 > 𝑘𝑠1
𝐷𝐹  = 𝑘𝑠0

𝐷𝐹                                                                                                         (39)  

𝑤ℎ𝑒𝑟𝑒:    𝑘𝑠1
𝐷𝐹 =  𝑘0 − 𝑐0

𝐷𝐹 ≡ 𝑘𝑠0
𝐷𝐹   ;   𝑘𝑠3

𝐷𝐹 = 𝑘𝑠1
𝐷𝐹 +

1

2
𝐶𝑆  ;  𝑘𝑠2

𝐷𝐹 = 𝑘𝑠1
𝐷𝐹 + 𝐶𝑆               

𝑘𝑠1
𝐷𝑆 > 𝑘𝑠3

𝐷𝑆 > 𝑘𝑠2
𝐷𝑆  = 𝑘𝑠0

𝐷𝑆                                                                                                         (40)  

𝑤ℎ𝑒𝑟𝑒:    𝑘𝑠2
𝐷𝑆 =  𝑘0 − 𝑐0

𝐷𝑆 ≡ 𝑘𝑠0
𝐷𝑆   ;    𝑘𝑠3

𝐷𝑆 = 𝑘𝑠2
𝐷𝑆 +

1

2
𝐶𝑆   ;   𝑘𝑠1

𝐷𝐹 = 𝑘𝑠2
𝐷𝑆 + 𝐶𝑆;       

Figure 4 presents the average number of default and distress events across all simulations for 

all three exercises. As we can see the overall estimates reflect the inequalities described in 

equation (39) and equation (40). Exercise 1, in which banks target a constant distant to 

minimum capital requirements, experience almost no change in the average number of 

default per simulation relative to the baseline, while a strong decrease in the average number 

of distress events. The opposite outcome is visible for Exercise 2, when banks target a 

constant distant from the distress threshold. The average number of default strongly 

decreases, whereas the average number of distress events increase due to the fact that now it 

is more difficult for banks to breach the default threshold, and more banks would lie in the 

distress zone. In the end, Exercise 3 shows that, for both types of event, the average 

decreases, lying between the estimates of Exercise 1 and Exercise 2. Notably, these results 

hold across different level of capital surcharges. Overall, the policy mix, according to these 

two metrics, average number of default and distress events, seems to be the most effective 

and also Pareto efficient outcome. However, since distress and default events are a discrete 

variables taking value 0 or 1, we provide the same comparison for a continuous variable such 

average losses across simulations, and check whether results may differ. 

Panel (a) of Figure 5 shows that average losses across all simulations decrease linearly, 

however differently among policies depending on the capital surcharge applied. For instance, 

a capital surcharge of 0.25% of RWA seems to be more effective in reducing average losses 

when applied to capital buffers relative to the policy mix and also to minimum capital 

requirements. Nevertheless, when the capital surcharge of 0.5% is applied, we find that 

higher capital requirements would reduce average contagion more than a capital surcharge 

                                                
18 The amplification effects due to leverage distress/default events may be visible in the tail of the distribution, 

whereas they don’t play an important role for the mean of distribution. By checking only default and distress 

events due to solvency, results do not change.  
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applied to capital buffer requirements, and even more relative to the policy mix. Interestingly, 

the policy mix which lies in between the two by construction, and therefore should be closer 

to the results of a capital surcharge applied to minimum capital buffers, is the least effective 

among the three.  

This finding emphasizes how heterogeneity in terms of banks’ balance sheet characteristics 

and the specificity of the network structure jointly modelled may produce non-linear 

interactions among shocks. Similar heterogeneity in the results is visible when the 0.75% 

capital surcharge is applied. In fact, at this point, the surcharge applied to capital buffer 

requirements become more effective than the capital surcharge applied to minimum capital 

requirements, while the policy mix remains still the least effective option. For capital 

surcharges equal to 1% of RWAs, we notice a trend inversion, and both capital buffer 

requirements and the policy mix become more effective than the minimum capital 

requirements surcharge, although the former is still more effective than the latter. However, 

for levels of capital surcharge above 1% of RWA, the policy mix becomes the most effective 

tool. This result shows how the impact of capital surcharge may have very heterogeneous 

effects depending on the starting condition of the banking sector, i.e. the distant of the 

banking sector from the distress and default thresholds.  

Figure 4: Average Default and Distress Events Across Capital Surcharges 

Panel (a):  All Average Sample Default Events           Panel (b):  All Sample Average Distress Events 

 
Note: The counterfactual analysis assumes a homogeneous increase across all banks in the sample of, 

respectively Minimum Capital Requirements (MCR), Capital Buffer Requirements (CBR), and an equal split 

among the two summing to the capital surcharge (MIX). The same amount of the capital surcharge is added to 

the capital base.  Baseline estimates (BSL) refer to the results presented in the previous sections based on the 

baseline calibration of the model parameters reported in the appendix A.  

Moreover, Panel (b) of Figure 5 shows that when we consider only tail-events, approximated 

by those simulations in which a top-50 bank default in terms of contagion index is assumed,  

we see that a capital surcharge applied to buffer requirements is on average the most effective 

policy option. This result holds even if we limit the sample to the top-30 or to the top-10 most 
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contagious banks. Nevertheless, this is not the most effective outcome at bank-specific level, 

since among the top-30 banks, there are two cases (at 1.5% of capital surcharge) in which an 

increase in minimum capital requirements would further improve the resilience of the system 

conditional to that bank defaulting. 

Figure 5: Average Losses, and Deviations from Minimum Capital Requirements 

Panel (a): All Sample 

 

 Panel (b): Top-50 Most Contagious Banks 

 

Note: The counterfactual analysis assumes a homogeneous increase across all banks in the sample of, 

respectively Minimum Capital Requirements (MCR), Capital Buffer Requirements (CBR), and an equal split 

among the two summing to the capital surcharge (MIX). The same amount of the capital surcharge is added to 

the capital base. Baseline estimates (BSL) refer to the results presented in the previous sections based on the 

baseline calibration of the model parameters reported in the appendix A. Deviations measure the difference 

between average loss computed by applying the capital surcharge to minimum capital requirement and to capital 

buffer requirements, or vis-à-vis the policy mix 

Overall, given our modelling framework, an increase in the capital buffer requirements tend 

to be more effective than an increase in the minimum capital requirements or the so defined 

policy mix. This result is driven by the fact that capital buffers may be interpreted like a fire-

wall. When a bank breaches it, the security signal is transmitted to the other banks in the 

network, which act and reduce their short-term exposures vis-à-vis the vulnerable and 

potentially contagious entity. The breach of capital buffer requirements, by providing private 

information to the public, triggers liquidity hoarding behaviors which, reshape the networks 
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structure, and, on average, tend to reduce the negative externalities a vulnerable node may 

further produce. 

4.5 Too Many Too Fail and Multiple Distress Events 

Differently from the previous sections, which focus on the impact of an idiosyncratic shock 

to a bank assuming its default, this section studies the contagion propagation due to a system-

wide shock aiming at studying the too-many-too-fail issue. Two exercises are performed: i) a 

multiple default scenario of LSIs to reconstruct whether and to what extent simultaneous 

small shocks may replicate the default of a large bank; ii) a multiple distress scenario.  

Regarding the first exercise, the shock assumes the default of the top-LSI banks following the 

ranking based on the baseline contagion estimates.19  In order to compare the magnitude of 

the initial shock, Figure 6 reports the number of LSIs shocked and the percentage of capital 

depletion relative to the average capital of the most contagious EAGSIB dividing it in 

buckets of 10% up to 100%. Since LSI banks are domestically-oriented banks, we compare 

estimates of the euro area-based contagion index. 

It is important to note that assuming multiple default events reduces in decrements the impact 

among banks. This is driven by the fact that, in a given jurisdiction, if more banks are 

exogenously assumed to be in default there are fewer banks that can potentially experience 

defaults as a result. This is true for domestic banks such as LSI which are mainly exposed to 

the domestic market.20  

Overall, we can see from Figure 6 that shocking the Top-6 most contagious LSI banks, 

which accounts for almost 10% of the average of EAGSIBs’ capital, produces a quite 

relevant impact, almost 40% of the one produced by the most contagious EAGSIB, and 2/3 of 

the EAGSIBs’ average contagion index. Definitely, size matters, but only up to a certain 

                                                
19 This assumption imposes that the capital base falls below the default threshold. This capital loss is not used 

for the calculation of the contagion index as in any other exercise. 
20 For instance, scenario “shock = 10%” assumes 6 LSI banks defaulting. The sum of their capital base is 

equivalent to 10% of the most contagious EAGSIB. However, scenario “shock 100%” assumes 83 LSI 

defaulting thereby the possible number of banks defaulting is reduced. This is likely the case, since when we 

look at scenario “shock 50%” 36 banks trigger almost the same number of defaults of the scenario with 83 

assumed defaults. There is a clear trade-off between the shock assumption and the comparability of the results. 

The initial assumption affects the network structure to a point that results may not be comparable anymore. This 

threshold for this exercise is around the 50% shock.  
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point. There is a network effect driven by the heterogeneity of banks’ characteristics and the 

topology of the network for which a similar shock may produce four times its impact. In fact, 

when the top-30 most contagious LSI banks default simultaneously (shock 40%), they show a 

contagion potential 25% higher than the EAGSIBs’ average. In the end, when the top-82 LSIs 

default simultaneously, that is a shock equivalent to 100% of the capital of the most 

contagious EAGSIB, the shock is able to replicate the very same effect. 

Figure 6: Too Many Too Fail 

 
Note: Contagion Index refers to capital losses to all euro area banks in percent of entire euro area banking 

system’s total capital. The shock is calculated in % of the capital of the EAGSIB. The initial shock resembles 

the default of the most contagious LSI given the baseline estimates of the contagion index.  

Regarding the second exercise, we shock to distress the most contagious euro area banks 

following the ranking based on the baseline contagion estimates. The combination of shocks 

(11) assumes that all top-11 euro area banks go into distress simultaneously, and then we 

perform additional scenarios by reducing the size of the initial shock by one bank at each 

time. For instance, scenario (2) assumes the simultaneous distress of the two most contagious 

euro area banks. Moreover, in order to show how heterogeneity of shocks may matter we 

provide estimates also for combination in reverse ordering from the least contagious bank 

among the top-11 banks (2R).   

In this respect, Figure 7 reports the initial shock in percent of the capital of the total banking 

system. The initial shock assumes that banks would deplete their capital base up to breaching 
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the distress threshold, i.e. their highest capital buffer21. The solvency distress assumption 

triggers behavioral responses from banks. The initial shocked banks would hoard liquidity 

from the system for precautionary reasons, while market reactions would imply that the non-

affected banks would reduce their exposure amount by the short-term part, which is 

calculated according to the exposure-specific funding shortfall.  

The key outcome of this exercise is to study how hoarding behaviors due to contagion and 

uncertainty connected to distressed banks may lead to non-negligible cascade effects. The 

attempt is to show how a much milder scenario than a default event may trigger contagion via 

the funding channel. It is important to note that for this exercise assuming multiple distress 

events does not reduce in decrements the impact among banks since shocked banks may still 

move from a solvency distress stance into a solvency, liquidity or leverage default situation.   

Figure 7 shows that multiple distress events have a relevant contagion potential, especially 

liquidity risk accounts for a large part of the contagion index, on average 45% across the 

various exercises. In the baseline estimates for a default event funding risk accounted on 

average for 7% of the total CI index. Moreover, for some scenarios, such as (2), (3) and (4) 

that is a simultaneous distress shock to respectively top-2, top-3 and top-4 most contagious 

banks, losses due to funding risk outweigh those from credit risk. This is the clear impact of 

hoarding behaviors in the interbank network, since the top-4 banks are also those that are the 

main liquidity providers to the network.  

Another interesting finding is that the relative size of the shock approximated by the capital 

of the shocked banks matter relatively less than the concentration of portfolios. In fact the 

latter is crucial in determining the level of contagion. Scenarios based on the reverse ordering 

(R), that is, with relatively smaller size banks, show relatively to its peer scenario with the 

same amount of banks shocked, a higher level of contagion and a lower density. A low 

density refers to the part of the network affected from the shock. For instance, scenario (2R) 

has a density equal to 28%, relative to scenario (2) which affects almost 80% of the 

network’s nodes. Hence, when the shock has a low density the very same banks in the 

network face cumulative losses, producing non-negligible amplification effects due to 

                                                
21 For simplicity we assume a solvency distress scenario. Changing the shock to a liquidity or leverage distress 

event would change the overall dynamics.  
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cascade defaults. In fact, the neighboring contagion indexes (NCI) in the scenario with low 

density (R), are always higher, than the NCI computed for the baseline Scenario (without R). 

Figure 7: Multiple Distress Events 

 
Note: the ratio between the full capital base of the banks involved and the total banking system’s capital 

approximates the shock size. Nonetheless, the actual capital depletion assumed is much smaller than the full 

capital base. We do this since it is easier to compare the actual size of the banks affected, preferring it to the 

relative size of the shocks. The X-axis reports the number of banks that have been set to distress. For instance, 

when x=2 we refer to the shock involving the most contagious banks among the top-11 banks, whereas when 

x=2R, it refers to the shock involving the least contagious banks of the top-11 most contagious banks. 

Contagion index report the losses induced to euro area banks as share of euro area banking system’s capital. 

NCI refers to the neighbouring contagion index, that is, induced losses divided by the capital of the affected 

banks (right hand side Y axis). Density captures the share of the nodes affected (right hand side Y axis). 

4.6 Heterogeneous and Non-linear Effects 

Changes in the estimation of liquidity and solvency parameters may lead to both 

heterogeneous and non-linear effects for the bank-specific contagion and vulnerability 

measures. This section aims at testing whether the results are sensible to this variation and if 

interactions among parameters may lead to non-linear effects. In this respect, the 

identification of each parameter threshold is important to assess whether additional cascade 

effects would be triggered, and in case they are, how relevant it is. 

Figure 8 shows the heterogeneous effects to a simultaneous variation of all liquidity 

parameters (funding shortfall, discount rate and pool of assets), to a change in all solvency 

parameters (LGD and distress threshold), and to a simultaneous change of both types of 

parameter. All parameters are gradually increased in steps of 10% up to 50%, with the 

exception of the funding shortfall, the discount rate and the distress threshold which are 

constructed with a slightly modified rule. In fact, the funding shortfall parameter has been 
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modified by increasing the minimum threshold. All exposures with a funding shortfall below 

the threshold were shifted up to the threshold. This was implemented to avoid some 

parameters from becoming larger than 1 for some exposures.  The discount rate presents the 

same issue. To overcome this, we set linear increases with half of the percentage points 

displayed in the chart. Regarding the distress threshold, to avoid becoming larger than the 

capital base, we set up an upper limit equal to the capital base minus 0.1%. Finally, the 

liquidity buffer and the pool of assets face a negative variation and not a positive one, as all 

other parameters. 

Findings show that heterogeneous contagion effects to simultaneous changes in liquidity 

parameters are clearly visible when parameters are increased by at least 40%-50%. The 

vulnerability index presents similar features. Contrary, results are much more sensible to 

simultaneous variations in solvency parameters. Already at 20%, banks tend to shift upwards, 

while above the 40% threshold they tend to produce homogenous levels of contagion and 

vulnerability. When we look at contemporaneous variations in liquidity and solvency 

parameters, we see that some banks may induce a higher level of contagion in the single 

solvency scenario than in the combined one. At a threshold lower than or equal to 40%, the 

average contagion index seems to be higher in the single solvency scenario than in the 

combined one. This because a higher funding shortfall parameter leads to higher amount of 

funding withdrawals and in turn to a lower amount of losses when a solvency default takes 

place. However, when the threshold shifts up to 50%, many banks tend to induce higher 

losses in the combined scenario than in the solvency. From a vulnerability perspective, the 

combined scenario tends to maintain heterogeneity in the vulnerability scores, at least more 

than in the case of the contagion index. Variations of single parameters are reported in 

Appendix C. 

Figure 9 aims at disentangling the non-linearities due to changes in the parameter thresholds. 

The non-linear effects in this modelling framework are a function of the number of cascade 

defaults produced in the system. The average effect across the top-50 banks is so reported for 

both the contagion and vulnerability indexes.  
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We see that single variations in liquidity parameters do not lead to non-linear effects.22 

Moreover, the effects are quite mild even by stretching the parameters up to 50%. However, 

when we perform simultaneous variations, we can see that some non-linearities appear above 

the 45% threshold. This is more evident when we look at the vulnerability index, which 

shows the beginning of non-linear effects around the 25% threshold. 

Contrary variations in solvency parameters tend to produce stronger effects than variations in 

isolation of liquidity parameters, and when combined the effects become clearly non-linear. 

Every 10% increases above the 30% threshold, the contagion index increase by almost a 

factor of 3.  This result holds also for the average vulnerability index of the top-50 banks.  

Last, when we combine variations in solvency and liquidity parameters the contagion index 

increases faster, just above the 25% threshold, and the non-linear effects become much 

stronger.  The CI index calculated on a 35% threshold is close to 6% for only variations in 

solvency parameters, and it reaches 17% when the liquidity ones are interacted. The average 

vulnerability index of the top-50 banks for a 35% threshold increase even more, by almost a 

factor of 8 due to the interaction with liquidity parameters.  

Overall, results seem to be robust for a range of parameters within a 25% variation. Above 

this threshold, the effects become extremely non-linear, producing many more cascade 

defaults relative to the baseline estimates. This potential source of non-linearities may place 

the accent on how shifts in parameters may be correlated, and if they tend to endogenously 

vary in the same dangerous directions. This would give a realistic prediction of the level of 

distress an adverse shock may produce. 

 

 

 

 

 

 

 

 

                                                
22 The only exception is for the liquidity buffer (see Appendix C). 
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Figure 8: Heterogeneous Effects due to Changes in Model Parameters 

Panel (a) Liquidity scenario                                 Panel (b). Liquidity scenario 

 

  Panel (c): Solvency scenario                       Panel (d). Solvency scenario         

 

Panel (e):  Combined scenario                      Panel (f). Combined scenario 

 

Note: the funding shortfall parameter has been modified by increasing the minimum threshold. All exposures 

with a funding shortfall below the threshold were shifted up to the threshold. Regarding the discount rate, we set 

linear increases with half of the percentage points displayed in the chart. Regarding the distress threshold, we set 

up an upper limit equal to the capital base minus 0.1%. All outliers of the vulnerability index higher than 60% 

have been omitted for comparative purposes. Finally, the liquidity buffer and the pool of assets face a negative 

variation and not a positive one as all other parameters. 
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Figure 9: Non-linear Effects due to Changes in Model Parameters 

Panel (a). Liquidity scenario: contagion      Panel (b). Liquidity scenario: vulnerability 

 

Panel (c). Solvency scenario: contagion       Panel (d). Solvency scenario: vulnerability 

 

Panel (e). Combined scenario: contagion        Panel (f). Combined scenario: vulnerability 

 

Note: It is reported the average effect across the top-50 banks. Scenario (LL) refers to the combined liquidity 

scenario; (FS) refers to variations in the funding shortfall; (LB) refers to variation in the liquidity buffer; (PA) 

refers to variations in the pool of assets; (DR) refers to variations in the discount rate; (LGD) refers to variations 

in the loss given default; (DST) refers to variations in the distress threshold; (MIX) refers to the combined 

scenario between solvency and liquidity parameters; (MIX fixed FS) refers to the combined scenario by keeping 

fixed the funding shortfall; (MIX fixed DST) refers to the combined scenario by keeping fixed the distress 

threshold. 
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Conclusion 

The paper has investigated how precautionary banks’ behaviours may amplify or mitigate 

contagion within the global banking network. In this respect, an adaptive contagion mapping 

methodology (A-CoMap) has been developed to model banks’ reactions to solvency, 

liquidity, and leverage distress events. The key mechanism at work allows banks to withdraw 

short-term funding from other banks that are in distress, while exposed through their long-

term claims, which remain contractually binding.  Hence, banks may reduce their exposures 

to the detriment of increasing the likelihood that the bank in distress ends up defaulting, 

thereby triggering credit risk losses equal to the amount of unsecured funded amounts to its 

funding counterparts.  

The key finding from such behaviours is that the overall number of distress and default 

events is reduced. However, this is only true in average, and it may be higher or lower on a 

case-by-case basis. Clearly, banks’ heterogeneity play a paramount role in driving the results 

in one direction or the other.  

Additionally, thanks to the comprehensive network structure covering bilateral linkages 

among domestic banks and between domestic and international banks, we have built a 

contagion matrix identifying the distribution of losses across five types of banks: EAGSIB, 

SI, LSI, GSIB, OSIB. GSIB banks are the most contagious within the euro area banking 

network, while EAGSIB are the most vulnerable, respectively those banks that induce and 

experience most losses in the euro area interbank network. Moreover, we have for the first 

time assessed how the two dimensions, domestic versus international, are intertwined. In fact, 

we have shown how a contagion index computed only on one of these dimensions, that is 

without considering the LSI sample or the international sample of banks, may be drastically 

underestimated for specific players.  

Further, we have shown how the baseline results are robust to the parameters calibration. 

Stretching the parameters values by 20% tends to only slightly change the average level of 

the contagion and vulnerability indexes. Hence, heterogeneity of banks is present because of 

the given network structure. Moreover, we have proved that increasing the level of 

parameters above 40% tends to create the opposite effect, all banks become quite 

homogeneous in terms of induced contagion. Complementary to this exercise, we have 

brought clear evidence of non-linearities in loss amplification. Tipping points emerge clearly 

from stretching the parameters in isolation, however remarkable non-linear amplification 

effects are the result of the interaction among the liquidity and solvency dimensions.  Hence, 
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the interaction between liquidity and solvency parameters leads to lower tipping points, make 

it more likely to generate this non-linear effect driven by higher amplification ratios. This 

implies that the inclusion of additional channels of contagion is crucial in assessing properly 

the nature of these non-linear features. 

Next, we assess for the first time the different effects in terms of system’ resilience of rising a 

bank’s minimum capital requirements relative to rising its capital buffer requirements. The 

results emphasize that the optimum in terms of contagion mitigation is a function of the 

capital surcharge. Depending on its amount and the banking system’s distance to the default 

and distress thresholds, an increase in minimum capital requirements may be more beneficial 

than rising the capital buffers, or a mix between the two. Moreover, we show that also in this 

exercise there is evidence of heterogeneous impact across banks, since rising capital buffers 

among the top-50 banks seems to be on average optimal. Nevertheless, at a bank-specific 

level, in two cases among the top-50 defaults the system will be better-off by rising minimum 

capital requirements.  

In the end, by running counterfactual exercises, we have shown how the too-many-too fail 

issue is actually as relevant as the too-big-too fail one. Small simultaneous domestic default 

shocks to the LSI sample may induce relevant contagion effects to the euro area banking 

system. This result highlights how domestic shocks may not be a negligible source of 

systemic risk in a so interconnected system.  

Finally, we relax the trigger event assumption to assess the contagion level due to a distress 

event. In this respect, the initial shock does not produce credit risk losses, but sets in motion 

liquidity dynamics which may lead to cascade liquidity defaults and in turn a relevant level of 

contagion. What we notice is that the level of induced losses depends on the combination of 

simultaneous distress events assumed. Complementarity and concentration of portfolios on a 

few entities are important network characteristics in determining contagion effects due to 

distress events.  

Having strengthened the analytical framework with the inclusion of the remaining players in 

the euro area banking system also motivates further research questions and areas. One of the 

important questions to ask, particularly relevant for policy-makers in the euro area, is how a 

systemic risk fund can prevent potential contagion losses to the system. Our adaptive CoMap 

model can be a reasonable starting point to fully incorporate central planners and various 

incentive mechanisms to analyse cost-benefit trade-offs of a systemic risks fund and what 

would be the suitable size and expected contribution from financial entities into such fund. 
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Appendix A 

1. Exposure-Specific Loss Given Default and Funding Shortfall 

One key insight from our network of large exposures is that we can disentangle the collateral 

amount pledged for each exposure. Hence, we are able to derive as shown in equation (38) an 

exposure-specific loss-given-default (𝛌𝐢,𝐣) between bank i and counterparty j as the ratio 

between the unsecured amount or net exposure (NE) over the total gross exposure amount 

(GE). Non-reporting banks in the sample are assumed to have a uniform LGD equal to the 

average �̅� across all reporting banks. On the one hand, (Panel a) depicts the distribution of 

λi,j which shows two consistent fat-tails and a mean (red line) equal to 50%. Exposures with 

an LGD close to 0 are fully secured, while exposures close to 1 are those fully unsecured for 

which equity exposures represent a relevant share. On the other hand, Panel (b) reports the 

amount of short-term funding as share of total funding, i.e. our funding shortfall parameter 

(𝜌𝑖,𝑗) as shown in equation (39). In this regard, short-term is defined as an exposure with 

maturity below one month. This is to be consistent with the liquidity coverage ratio which 

assumes a 30-day distress scenario for determining the minimum HQLA buffer. 

𝜆𝑖,𝑗 =
𝑁𝐸𝑖,𝑗

𝐺𝐸𝑖,𝑗
= 𝐿𝐺𝐷𝑖,𝑗                                                                                                                                         (38)  

𝜌𝑖,𝑗 =
𝐺𝐸𝑖,𝑗<30𝑑𝑎𝑦𝑠

𝐺𝐸𝑖,𝑗
                                                                                                                                               (39)  

2. Liquidity Surplus 

The liquidity surplus is directly derived from the liquidity coverage ratio and consists of the 

difference between the LCR’s numerator and denominator.23 Hence, the liquidity surplus 

(𝛾𝑖) refers to the stock of HQLAs (𝐿𝐵𝑖) above the net funding outflows (𝑁𝐿𝑂𝑖) over a 30-day 

liquidity distress scenario. (Panel c) reports the surplus as share of banks’ total assets. The 

average of the sample is close to 7.5% which is used for approximating the missing LCRs for 

some international banks.24 The liquidity surplus may be used to obtain liquidity from the 

central bank in exchange for collateral, or to deleverage if the bank is in leverage distress.  

𝐿𝐶𝑅:   
𝐿𝐵𝑖

𝑁𝐿𝑂𝑖
> 1   

𝑦𝑖𝑒𝑙𝑑𝑠
→         𝐿𝐵𝑖 > 𝑁𝐿𝑂𝑖    

𝑦𝑖𝑒𝑙𝑑𝑠
→            𝛾𝑖 ≡  𝐿𝐵𝑖 −𝑁𝐿𝑂𝑖 > 0                                     (40)  

                                                
23 The numerator, as of 2018, needs to be larger than 100% of the denominator.  
24 Furthermore, if a bank is currently facing a transition period to achieve the 100% LCR ratio, whenever 

𝑁𝐿𝑂𝑖 > 𝐿𝐵𝑖 , in order to be conservative we set 𝛾𝑖 = 0. 
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3. Fire Sales Discount Rate and Pool of Assets 

Modelling fire sales via cross-holding of assets a’ la Cont and Schaanning (2017) requires 

granular-asset class information for all banks in the network. At the ECB such information is 

available only for the top-20 euro area banks leaving most of the sample uncovered. In this 

respect, we prioritize having a common approach for all banks in the sample and thus we 

construct and use bank-specific parameters to approximate a fire sales event. As previously 

described, if a bank is leverage or liquidity constrained, it is forced to respectively sell and 

pledge part of its surplus of HQLA assets. In this respect, we assume that no discount rate is 

applied on the sales of the HQLAs consistently with the assumption on pledging them to the 

central bank in exchange for liquidity. However, in case the surplus of HQLAs (𝛾𝑖 ) is 

depleted, the bank may sell at a discount rate from its pool of financial non-HQLA assets to 

obtain additional liquidity. 25  Hence, we calibrate the rate at which banks are forced to 

discount their assets as they react to a funding shortfall. 

This category of assets is retrieved from the asset encumbrance template F.32.01 which is 

further broken-down into different asset classes. In this respect, Equation (41) approximates 

the discount rate (𝛿𝑖) as the ratio between the discounted amount of unencumbered non-

central bank eligible assets (𝐷_𝑈𝑁𝐶𝐵𝐸𝐴𝑖 ) over the total amount of unencumbered non-

central bank eligible assets (𝑈𝑁𝐶𝐵𝐸𝐴𝑖 ), which captures the pool of non-HQLA assets 

available for sale (𝜃𝑖). Therefore the 𝛿𝑖  coefficient is derived as the weighted average haircut 

(𝛿�̅�)  of each asset classes 𝐴𝑗 : respectively covered bonds (𝛿�̅�𝐵) , asset backed securities 

(𝛿�̅�𝐵𝑆 ), debt securities issued by general governments (𝛿�̅�𝐺) , debt securities issued by 

financial corporations (𝛿�̅�𝐶), debt securities issued by non-financial corporations (𝛿�̅�𝐹𝐶), and 

equity instruments (𝛿̅̅̅𝐸). The average haircut (𝛿�̅�) for each asset class is based on the latest 

ECB’s guidelines on haircuts.26 Moreover, in order to take into account that the instruments 

we are dealing with are non-central bank eligible, we assume that the bottom threshold for 

haircuts is the highest haircut for central bank eligible instrument, i.e. 38%. 

𝛿𝑖 = ∑
𝛿𝑗̅̅ ̅𝐴𝑗

𝐴𝑗
=𝑁

𝑗
�̅�𝐶𝐵𝐶𝐵𝑖+�̅�𝐴𝐵𝑆𝐴𝐵𝑆𝑖+�̅�𝐺𝐺𝐺𝐺𝑖+�̅�𝐹𝐶𝐹𝐶𝑖+�̅�𝑁𝐹𝐶𝑁𝐹𝐶𝑖+�̅�𝐸𝐸𝑖

𝑈𝑁𝐶𝐵𝐸𝐴𝑖
                                                             (41)  

                                                
25 We do not allow banks to sell part of their loan portfolios. 
26 The haircut used for each asset class is the average across maturities. Calculations can be provided upon 

request. See: https://www.ecb.europa.eu/ecb/legal/pdf/celex_32018o0004_en_txt.pdf  

https://www.ecb.europa.eu/mopo/assets/risk/liquidity/html/index.en.html 

https://www.ecb.europa.eu/ecb/legal/pdf/celex_32018o0004_en_txt.pdf
https://www.ecb.europa.eu/mopo/assets/risk/liquidity/html/index.en.html
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For international banks for which we lack FINREP template F.32.01, we derive the discount 

rate 𝛿𝑖 and the pool of assets available for sale (𝜃𝑖) with a two-step procedure as based on 

balance sheet categories. (Panels d and e) depicts respectively the bank-specific discount rate 

(𝛿𝑖) and the pool of assets available for sale (𝜃𝑖), the latter as share of total assets. As can be 

noticed, the bank-specific discount rate (𝛿𝑖) is centered around 62.5%, whereas the pool of 

non-central bank eligible assets is left skewed, with a mean centered around 10% of total 

assets. 

4. Solvency Distress/Default Threshold 

A key assumption to model banks’ reactions is the definition of default (𝑐𝑖
𝐷𝐹) and distress 

(𝑐𝑖
𝐷𝑆) thresholds. On the one hand, a default event is triggered when the bank experiences a 

breach to its minimum requirements defined as the sum of minimum Tier1 capital (MC) 

equal to 6% of RWAs and the bank-specific Pillar 2 requirement (P2R) set by the supervisor 

(Equation 42). On the other hand, a distress event is triggered when the bank faces a breach 

in its level of capital buffer defined as the sum of the default threshold (𝑐𝑖
𝐷𝐹), the capital 

conservation buffer (CCoB) ranging between 1.875% and 2.5% CET1 capital, a bank-specific 

buffer, which is the higher among the Systemic Risk Buffer (SRB), GSII and OSII buffers, 

and a counter-cyclical capital buffer requirement (CCyB).27 Overall, when the bank breaches 

the minimum capital requirement (𝑐𝑖
𝐷𝐹) it is assumed that the supervisor would declare the 

bank for “failing or likely to fail” (which is the official trigger for putting the bank into 

resolution).28 When the bank breaches the buffer requirement (𝑐𝑖
𝐷𝑆) while not yet breaching 

the minimum capital requirement, it is assumed that it will not be declared failing but that it 

would rather be constrained in its ability to pay out dividends, hence in distress. Figure A.1 

(Panels g and h) show the sample distribution of both thresholds. 

𝐷𝑒𝑓𝑎𝑢𝑙𝑡 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≡   𝑐𝑖
𝐷𝐹  = (𝑀𝐶𝑖 + 𝑃2𝑅𝑖)                                                                                      (42)  

𝐷𝑖𝑠𝑡𝑟𝑒𝑠𝑠 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≡  𝑐𝑖
𝐷𝑆 = [𝑐𝑖

𝐷𝐹 + 𝐶𝐶𝑜𝐵𝑖  + max  (𝑆𝑅𝐵𝑖, 𝐺𝑆𝐼𝐼𝑖, 𝑂𝑆𝐼𝐼𝑖) + 𝐶𝐶𝑦𝐵𝑖]               (43)  

                                                
27 Depending on the extent to which the jurisdiction where the bank is located has fully or only partially phased 

in the end-2019 requirement. 
28 As stated in the Bank Recovery and Resolution Directive (BBRD), the resolution authority should trigger the 

resolution framework before a financial institution is balance sheet insolvent and before all equity has been fully 

wiped out (Title IV, Chapter I, Art. 32, Point 41). Thus, our calibration method is consistent with the Bank 

Recovery and Resolution Directive’s (BRRD) guidelines on fail or likely to fail: “An institution shall be deemed 

to be failing or likely to fail in one or more of the following circumstances: … because the institution has 

incurred or is likely to incur losses that will deplete all or a significant amount of its own funds” (Title IV, 

Chapter I, Art. 32, Point 4). 
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5. Leverage ratio 

The Basel Committee on Banking Supervision (BCBS) decided to make the provisional 3.0% 

leverage ratio a binding minimum requirement from 2018 onwards. Banks may therefore face 

a trade-off between investing in RWAs and expanding their balance sheet towards less risky 

assets since the leverage ratio may become binding. In this regard, it is important to track 

banks’ leverage dynamics through the system and assess how this target threshold may affect 

the spread of contagion. We so define in Equation (44) leverage as the ratio between Tier 1 

capital and total assets which must be at any time higher than 3%, otherwise the bank is 

considered in leverage distress. We also consider that a bank may be in default due to an 

extremely high leverage when it is below 1%.  

As we can see banks from (Panel f), leverage ratio ranges between 3.5% and 60%, with an 

average close to 10%.   

𝐿𝑒𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑎𝑡𝑖𝑜 ≡  𝐿𝑅𝑖 = 
𝑇𝑖𝑒𝑟1 𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖

𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠𝑖
  > 3%                                                                                    (44)  

 

Figure A.1: Exposure-specific and Bank-specific Calibrated Model Parameters 

         Panel (a): Loss given default                   Panel (b): One month funding shortfall 

  
     Panel (c): Liquidity surplus                       Panel (d): Fire-sales discount rate 

 
Panel (e): Available-for-sale pool of assets           Panel (f): Leverage Ratio    
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Panel (g): Distress Threshold TIER1                Panel(h): Default Threshold TIER1 

 
Source: COREP Supervisory Data (Templates: C.01-C.03, C.28.00, C.30, C.67.00.a, C.72.00.a); 

FINREP Supervisory Data (Templates F.01, F32.01); and Bankscope. 
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Appendix B – Breakdown of Main results 

Table B.1 reports the top-50 default events ranked in terms of contagion index (CI) to the 

euro area banking system. The hypothetical default event of one bank among the top-10 

depletes almost 1.8% of the euro area banking system’s Tier 1 capital, approximately EUR 47 

billion.29 The CI index of the most contagious bank is larger by a factor of 11 than the least 

contagious bank among the top-50 banks, and even among the top-10 most contagious banks 

remarkable differences exist. 

International spillovers seem to be pronounced even if the domestic network of less-

significant institutions comes into play. In fact, in terms of contagion, there is an almost equal 

split between EA and extra-EA banking groups. 24 extra-EA banking groups occupy the top-

50, whereas 5 out of 10 the top-10, and the most contagious bank is a foreign institution.  

In terms of channels underlying contagion, losses due to credit risk dominate those due to 

funding risk via fire sales by a factor respectively of 14 among the top-10 banks, and by a 

factor of 20 among the top-50. This finding emphasizes that the top contagious banks are the 

central liquidity providers of the network, and a failure among them would trigger liquidity 

hoarding behaviors and fire sales losses.  

An innovative feature of the CoMap methodology is the neighboring contagion index (NCI). 

In fact, it remarkably differs from the standard CI by taking into account the density of loss 

propagation. The lower the density the higher is the NCI, implying that the amount of losses 

is quite concentrated across few banks. For instance, bank 49 and bank 43, which are at the 

bottom of the top-50 shows the highest NCI because they affect respectively only 2% and 3% 

of the total banking sector. Moving now to the top-10, we can clearly notice that extra-EA 

banks show an NCI always higher than EA banks. This is due to the fact that extra-EA banks 

have always a lower density than EA banks, they affect, in average, fewer nodes than EA 

banks do.  Moreover, the share of losses is unevenly distributed across its direct and indirect 

connected counterparts, if we decompose the NCI on a bank-to-bank basis30. Overall, a high 

NCI represents (i) a bank highly exposed to a relatively closed domestic network, or (ii) it 

might be an extra-EA bank strongly exposed to the core of the euro area banking sector. The 

                                                
29 The capital of the triggering bank is not included in the CI index calculation. 
30 For confidentiality reasons we cannot share results based on this level of granularity. 
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latter pattern comes from the structure of the dataset since we miss bilateral linkages among 

extra-EA banks, thereby reducing on average the number of directly and indirectly connected 

components.  

When it comes to the nature of default/distress events (contagion level), solvency defaults are 

more likely to be induced than liquidity or leverage defaults. In comparison, liquidity distress 

events are more likely to be induced than a solvency or leverage distress events. Hence, a 

bank with a higher share of induced liquidity default/distress events than solvency/leverage 

distress events may be identifiable as a liquidity provider in the network, otherwise a liquidity 

drainer. In the end, some entities may trigger much more default/distress events relatively to 

their CI ranking. This is due to the fact that these banks are central entities within the 

domestic network of LSIs. Hence, small-medium domestic banks play an important role of 

contagion amplifier. This finding highlights the relevance of considering the network of EA 

significant and less-significant institutions in its entirety since some SIs are more exposed to 

the LSI sample than to other SI and global banks. Neglecting this topologic feature of the 

network may strongly underestimate cascade effects and banks’ contribution to euro area 

systemic risk.  

This finding brings to the forefront the relevance of the interconnectedness literature based on 

bilateral exposures and bank balance-sheet based methodologies to study systemic risk since 

approaches based on market data, for which data on small-medium entities are not available, 

cannot capture this contagion and amplification channel. This channel of contagion is further 

investigated in section 4.2 to study if and under which conditions small shocks to the 

periphery of the network may provoke system-wide losses.  

Another modelling feature we want to assess it’s the degree of amplification an exogenous 

default event may determine. Hence, we report the number of rounds the algorithm faces 

before converging as well as the ratio between direct and indirect losses. The average number 

of rounds is close to 3, with some banks inducing distresses or defaults up to fifth round after 

the initial shock hit the system. This implies that in every round there has been at least one 

default or distress event leading to additional dynamics and possible losses in subsequent 

rounds. Hence, we calculate the contribution of amplification effects to a bank’s systemic 

importance. On average, 33% of losses among the top-10 banks are induced due to other 

banks’ subsequent distress or default events. This finding has relevant policy-bearings. By 

avoiding contagion to further entities, the amount of losses induced by banks with a high 
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amplification ratio would be strongly reduced, therefore thwarting an idiosyncratic shock 

from becoming a system-wide one.  

Table B.1:  Contagion Measures 

 
Note: For confidentiality reasons bank names have been anonymized. The results in this table are ranked by CI 

index. CI refers to contagion index at euro area scale and amounts represent capital losses to all banks in percent 

of entire euro area banking system’s total capital. This index is further decomposed into the respective 

contributions by credit (CI CR) and funding (CI FU) shocks. Defaults refer to the number of defaults a bank has 

induced in the system. Rounds indicate the maximum number of rounds the simulation required until no 

additional defaults in the system, whereas amplification ratio is the ratio of losses in subsequent rounds to losses 

in the initial round. The sacrifice ratio indicates the ratio of systemic losses caused by a bank over the cost of 

rescue package to fully recapitalize the bank. 

 

Nevertheless, a high amplification ratio is not enough to justify such an intervention. A euro 

area macroprudential supervisor needs a complementary perspective to assess pragmatically 

the cost-return tradeoff of saving the bank. Hence, it needs to look at the EA sacrifice ratio 

indicator. In fact, this metric, when it is higher than 1, indicates that the cost of recapitalizing 

the initial bank defaulting up to its full capital base is lower than the costs induced to the 

system if it fails. In this way we are able to capture, as widely discussed in the systemic risk 

Rank Country Type CI CI CR CI FU NCI Density ToT Solv. Liq. Lev. ToT Solv. Liq. Lev. Rounds Ratio G EA N

1 XEA GSIB 2.84 2.75 0.09 2.46 37.68 4 3 1 2 10 5 6 3 4 0.3 1.2 1.1 0.1

2 EA EAGSIB 2.18 1.99 0.19 1.19 63.57 14 12 2 4 23 13 11 7 3 0.3 3.3 2.7 1.1

3 EA EAGSIB 2.12 2.12 0.00 0.95 64.59 15 15 0 7 17 7 11 9 3 0.1 1.5 1.5 0.5

4 EA EAGSIB 1.86 1.65 0.21 1.01 65.26 12 12 1 5 20 9 12 9 3 0.5 3.5 2.8 1.0

5 XEA GSIB 1.83 1.66 0.17 1.86 33.69 2 1 1 0 5 4 1 0 3 0.4 2.5 2.0 0.1

6 EA EAGSIB 1.80 1.72 0.08 1.02 63.46 7 7 1 0 9 5 4 2 3 0.5 4.0 3.2 1.5

7 XEA GSIB 1.77 1.56 0.21 2.04 29.06 1 1 1 0 3 1 2 1 2 0.4 2.3 2.0 0.0

8 XEA GSIB 1.36 1.18 0.18 1.45 33.85 4 3 1 1 9 3 6 4 4 0.6 4.4 3.5 0.2

9 XEA GSIB 1.35 1.35 0.00 1.61 24.10 1 1 0 0 1 0 1 0 3 0.0 0.7 0.7 0.0

10 EA EAGSIB 1.34 1.21 0.13 0.67 57.89 28 23 5 12 33 12 22 17 4 0.3 2.0 2.0 0.7

1.84 1.72 0.12 1.42 47.31 8.8 7.8 1.30 3.10 13.0 5.9 7.6 5.20 3.20 0.33 2.54 2.15 0.52

11 EA EAGSIB 1.30 1.29 0.01 0.75 49.41 11 11 1 1 12 6 6 5 3 0.0 1.1 1.1 0.3

12 EA SI 1.28 1.28 0.00 0.78 47.15 56 55 2 6 108 91 19 17 4 0.0 5.4 5.3 5.1

13 EA EAGSIB 1.18 1.18 0.00 0.63 54.11 11 10 0 5 14 6 10 9 4 0.0 5.3 5.2 2.7

14 XEA GSIB 1.16 1.02 0.14 1.64 26.77 2 2 0 1 4 1 3 1 3 0.7 3.5 2.6 0.2

15 XEA GSIB 1.16 1.16 0.00 0.97 35.12 3 1 2 0 6 4 2 2 3 0.0 0.9 0.9 0.0

16 XEA GSIB 1.12 1.01 0.11 2.07 20.81 1 1 0 0 1 0 1 0 2 0.7 0.9 0.7 0.1

17 EA SI 0.79 0.79 0.00 0.80 31.81 13 12 1 7 17 8 10 8 5 0.1 2.0 1.8 1.0

18 XEA GSIB 0.65 0.65 0.00 0.95 19.68 0 0 0 0 0 0 0 0 1 0.0 3.0 3.0 0.0

19 EA SI 0.64 0.63 0.01 0.47 38.82 134 132 3 58 125 31 94 86 4 0.2 34.7 34.7 34.5

20 EA SI 0.61 0.40 0.21 1.29 27.98 2 1 1 1 3 0 3 2 3 1.2 26.3 12.8 0.3

21 XEA GSIB 0.58 0.58 0.00 1.24 13.45 0 0 0 0 1 0 1 0 2 0.0 1.0 1.0 0.0

22 EA EAGSIB 0.58 0.58 0.00 0.32 53.09 7 6 1 0 9 6 4 2 3 0.0 1.7 1.7 0.9

23 EA SI 0.56 0.56 0.01 0.42 40.45 5 4 2 0 7 5 2 1 3 0.1 0.9 0.9 0.3

24 EA SI 0.51 0.36 0.15 0.30 54.30 10 9 2 4 10 4 6 4 4 0.6 2.7 2.4 0.1

25 XEA GSIB 0.49 0.49 0.00 0.72 19.51 1 1 0 1 2 0 2 2 3 0.0 1.0 1.0 0.0

26 XEA GSIB 0.46 0.46 0.00 1.24 10.57 0 0 0 0 0 0 0 0 1 0.0 1.0 1.0 0.0

27 XEA OSIB 0.44 0.44 0.00 0.91 14.19 0 0 0 0 0 0 0 0 1 0.0 0.2 0.2 0.0

28 EA SI 0.44 0.44 0.00 0.40 31.48 11 10 1 4 14 6 9 6 4 0.2 1.0 1.0 0.7

29 XEA GSIB 0.43 0.43 0.00 0.39 31.61 0 0 0 0 3 3 0 0 2 0.0 0.3 0.3 0.0

30 EA SI 0.43 0.43 0.00 0.26 47.26 6 6 0 2 6 4 3 3 3 0.0 3.1 3.1 2.6

31 EA SI 0.40 0.40 0.00 0.36 31.75 0 0 0 0 8 7 1 1 3 0.0 4.4 4.4 4.3

32 XEA GSIB 0.38 0.38 0.00 0.63 17.69 1 0 1 0 1 0 1 0 2 0.0 0.2 0.2 0.0

33 EA SI 0.38 0.38 0.00 0.64 16.97 0 0 0 0 0 0 0 0 1 0.0 5.1 5.1 4.4

34 XEA GSIB 0.38 0.38 0.00 0.93 12.42 1 1 0 0 0 0 0 0 2 0.0 0.1 0.1 0.0

35 EA EAGSIB 0.38 0.38 0.00 0.17 63.92 4 4 0 1 5 3 2 2 3 0.0 0.4 0.4 0.0

36 XEA GSIB 0.37 0.37 0.00 0.53 20.47 1 1 0 0 0 0 0 0 2 0.0 0.1 0.1 0.0

37 EA SI 0.37 0.37 0.00 0.21 50.74 2 2 0 0 10 7 3 3 3 0.0 0.7 0.7 0.1

38 XEA GSIB 0.34 0.34 0.00 0.91 11.25 1 1 0 0 0 0 0 0 2 0.0 0.1 0.1 0.0

39 EA SI 0.33 0.33 0.00 0.36 26.17 1 1 0 0 0 0 0 0 2 0.0 8.1 8.1 7.9

40 XEA OSIB 0.32 0.32 0.00 0.72 12.68 0 0 0 0 3 1 2 1 3 0.0 0.7 0.7 0.0

41 EA SI 0.32 0.32 0.00 0.47 19.38 3 3 0 0 1 0 1 1 3 0.0 1.5 1.5 1.0

42 EA SI 0.32 0.32 0.00 0.39 24.80 1 0 0 1 2 1 1 1 2 0.0 15.2 14.4 5.0

43 XEA OSIB 0.31 0.31 0.00 2.94 3.05 0 0 0 0 0 0 0 0 1 0.0 1.5 1.5 0.0

44 EA SI 0.30 0.26 0.04 1.06 19.88 1 1 0 0 3 1 2 1 2 15.0 21.0 8.5 3.5

45 EA LSI 0.29 0.29 0.00 0.39 37.31 0 0 0 0 0 0 0 0 2 0.0 53.8 30.5 1.8

46 XEA GSIB 0.28 0.28 0.00 0.81 10.02 0 0 0 0 0 0 0 0 1 0.0 0.1 0.1 0.0

47 XEA OSIB 0.27 0.27 0.00 1.80 4.37 0 0 0 0 0 0 0 0 1 0.0 0.4 0.4 0.0

48 XEA OSIB 0.27 0.27 0.00 0.78 9.86 0 0 0 0 2 2 0 0 2 0.0 4.0 4.0 0.0

49 XEA OSIB 0.27 0.27 0.00 3.65 2.08 1 1 0 0 0 0 0 0 2 0.0 3.8 3.8 0.0

50 EA LSI 0.26 0.26 0.00 2.00 3.75 62 61 1 31 55 13 42 38 5 0.3 52.8 52.8 52.8

0.80 0.76 0.04 1.01 30.8 8.8 8.3 0.6 3.1 11.2 5.4 6.1 5.0 2.7 0.45 5.9 4.8 2.7

Sacrifice RatioGLOBALEURO AREA LOSSES AmplificationDefaults Distress

AVERAGE TOP 50

AVERAGE TOP 10

Contagion
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literature, those entities which are too interconnected to fail (Battiston et al., 2012). These 

two measures, sacrifice ratio and amplification ratio, may be positive correlated, though not 

always. If a bank’s induced losses are due to first round effects, the amplification ratio may 

be smaller than 1 but the sacrifice ratio may still suggest a positive return from the 

intervention. This ratio may also be presented from a national or a global perspective. In fact, 

there may be cases for which an intervention is justified on a euro area scale but not 

nationally since the potential losses induced to the domestic banking system are lower than 

the cost of recapitalizing the bank.  

Having investigated the various aspects of contagion, it is important to understand its 

complementary interface, i.e. which banks are the most vulnerable and how contagion affects 

them. Hence, banks are ranked by vulnerability index at a global scale.  

The banks with the 50 highest vulnerability scores are all from within the euro area and 

belong to the sample of less-significant institutions. This is due to the fact that the large 

exposures dataset, as emphasized in section 2, mostly captures exposures from euro area 

banks, and for this precise reason, we adopt a euro area centric view.  

The most vulnerable bank experiences on average 2% of capital depletion given any other 

bank default in the system. The average for the top-50 is close 0.24%, double than the 

average of the full sample, and half of the average of the top-10 most vulnerable banks. Four-

Fifth of the losses is due to credit risk, while one-fifth to liquidity risk, the latter mostly 

concentrated in few entities. 

In terms of experienced default events, solvency risk is the primary cause, followed by 

leverage defaults (leverage below 1.5%) and liquidity defaults events which are much lower. 

Contrary, liquidity distress events are more likely to be triggered, with an average among the 

top-50 12 times higher than solvency distress events and 20% higher than leverage distress 

events. Notably, among banks defaulting due to solvency, on average among the top-50 only 

25% of the cases are previously in a solvency distress situation. This outlines that on average 

a default event and subsequent cascade effects are usually deep enough to directly breach 

minimum capital requirements and deplete within the same round all the capital buffers. This 

leads to important policy implications that will be further assessed with counterfactual 

exercises in the macroprudential section. 
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In the end, we report for comparative purpose, the euro area-based vulnerability index and its 

regional contribution in order to disentangle which banks may be most vulnerable from 

shocks arising from within and outside the euro area banking system. On average, 83% of the 

losses are provoked from within the euro area, although some banks are more exposed to 

risks outside the euro area. This ratio also holds across the full sample of banks. 

Table B.2: Vulnerability Measures 

 
Note: For confidentiality reasons bank names have been anonymized. VI refers to vulnerability index and amounts represent average capital 

losses across all independent simulations in percent of a bank’s capital. The vulnerability index is further decomposed into the respective 

contributions by credit (VI CR) and funding (VI FU) shocks. VI from Euro Area (VI EA) is computed with respect to average losses caused 
by banks in respective groups. Defaults refer to the number of defaults a bank has experienced given the hypothetical (exogenous) defaults 

of each other bank in the system. Amplification ratio is is the ratio of losses in subsequent rounds to losses in the immediate round. The 

results in this table are ranked by VI Global Scale. 

Overall, Figure A.2 combines information from both indexes, although here the vulnerability 

index is derived in absolute terms before being normalized. In this respect, this graph is 

divided into four quadrants capturing different degrees of banks’ systemic footprints. Banks 

in the north-west quadrant (B) are those whose default would induce the greater amount of 

losses to the euro area banking system, while those lying in the south-east quadrant (C) are 

those most vulnerable to a default event. Banks located in the north-east quadrant (D) are 

Amplification Contribution

RANK Type VI VI CR VI FU ToT Solv. Liq. Lev. ToT Solv. Liq. Lev. Ratio Own_J VI VI CR VI FU

1 LSI 2.04 0.00 2.04 11 11 3 0 11 0 11 0 0.0 0.57 0.99 0.00 0.99

2 LSI 0.55 0.55 0.00 9 8 0 9 15 0 15 9 0.9 18.28 0.41 0.41 0.00

3 LSI 0.51 0.00 0.51 1 1 1 0 1 0 1 0 0.0 0.00 0.55 0.00 0.55

4 LSI 0.45 0.45 0.00 14 14 0 12 16 0 16 15 0.0 2.95 0.32 0.32 0.00

5 LSI 0.36 0.36 0.00 8 8 0 8 9 1 8 8 0.1 1.67 0.35 0.35 0.00

6 LSI 0.29 0.29 0.00 7 7 0 7 7 0 7 7 0.6 2.10 0.32 0.32 0.00

7 LSI 0.29 0.29 0.00 6 6 0 1 6 3 3 3 0.0 13.65 0.30 0.30 0.00

8 LSI 0.28 0.28 0.00 6 6 0 3 6 1 5 4 1.0 1.97 0.30 0.30 0.00

9 LSI 0.26 0.26 0.00 5 5 0 3 8 1 7 5 0.0 0.00 0.19 0.19 0.00

10 LSI 0.26 0.26 0.00 6 6 1 4 4 0 4 4 2.4 1.86 0.28 0.28 0.00

AVERAGE TOP 10 0.53 0.27 0.26 7.3 7.2 0.5 4.7 8.3 0.6 7.7 5.5 0.5 4.3 0.40 0.25 0.14

11 LSI 0.26 0.26 0.00 7 7 0 5 8 0 8 8 0.0 6.55 0.23 0.23 0.00

12 LSI 0.24 0.24 0.00 2 0 0 2 15 0 15 14 0.0 0.18 0.25 0.25 0.00

13 LSI 0.24 0.24 0.00 4 4 0 1 4 0 4 4 1.4 1.70 0.26 0.26 0.00

14 LSI 0.24 0.24 0.00 7 7 0 7 8 0 8 8 2.5 1.73 0.26 0.26 0.00

15 LSI 0.23 0.23 0.00 6 6 0 4 6 0 6 4 2.1 1.62 0.24 0.24 0.00

16 LSI 0.22 0.22 0.00 2 2 0 0 2 2 0 0 0.0 0.22 0.19 0.19 0.00

17 LSI 0.21 0.16 0.05 5 5 2 5 7 1 7 6 0.9 1.51 0.23 0.18 0.05

18 LSI 0.21 0.21 0.00 6 6 0 1 4 1 3 1 0.2 0.07 0.10 0.10 0.00

19 LSI 0.21 0.21 0.00 0 0 0 0 1 0 1 1 0.0 0.34 0.22 0.22 0.00

20 LSI 0.21 0.21 0.00 1 1 0 1 3 2 1 1 0.0 0.26 0.18 0.18 0.00
0.0

21 LSI 0.19 0.19 0.00 6 6 0 5 6 0 6 6 0.0 1.03 0.21 0.21 0.00

22 LSI 0.18 0.18 0.00 7 7 0 1 3 0 3 2 0.0 10.33 0.20 0.20 0.00

23 LSI 0.18 0.18 0.00 0 0 0 0 1 0 1 1 1.6 0.08 0.18 0.18 0.00

24 LSI 0.18 0.18 0.00 4 4 0 1 1 0 1 1 0.0 1.39 0.17 0.17 0.00

25 LSI 0.17 0.17 0.00 3 3 0 3 6 3 3 3 0.5 1.26 0.19 0.19 0.00

26 LSI 0.16 0.16 0.00 3 3 0 1 3 0 3 3 0.2 1.14 0.18 0.18 0.00

27 LSI 0.16 0.16 0.00 4 4 0 0 1 1 0 0 0.0 4.93 0.17 0.17 0.00

28 LSI 0.15 0.15 0.00 4 4 0 4 4 0 4 4 0.4 1.11 0.17 0.17 0.00

29 LSI 0.15 0.15 0.00 4 4 0 2 4 0 4 4 0.0 5.55 0.16 0.16 0.00

30 LSI 0.15 0.15 0.00 1 0 0 1 5 0 5 5 0.0 0.15 0.11 0.11 0.00

31 LSI 0.15 0.15 0.00 0 0 0 0 3 3 0 0 2.4 0.47 0.14 0.14 0.00

32 LSI 0.15 0.15 0.00 9 9 0 2 8 0 8 8 0.3 0.92 0.16 0.16 0.00

33 LSI 0.15 0.15 0.00 3 3 0 0 1 1 0 0 0.0 0.24 0.16 0.16 0.00

34 LSI 0.14 0.14 0.00 0 0 0 0 5 5 0 0 0.0 0.39 0.10 0.10 0.00

35 LSI 0.14 0.14 0.00 1 1 0 0 5 4 1 1 0.0 0.04 0.06 0.06 0.00

36 LSI 0.14 0.14 0.00 1 1 0 0 0 0 0 0 1.0 0.92 0.14 0.14 0.00

37 LSI 0.14 0.14 0.00 2 2 0 0 12 12 0 0 0.0 0.11 0.12 0.12 0.00

38 LSI 0.14 0.14 0.00 0 0 0 0 0 0 0 0 1.8 0.99 0.15 0.15 0.00

39 LSI 0.14 0.14 0.00 4 4 0 1 1 0 1 1 0.0 0.33 0.09 0.09 0.00

40 LSI 0.14 0.14 0.00 2 2 0 1 3 1 2 2 0.0 0.59 0.15 0.15 0.00

41 LSI 0.13 0.13 0.00 3 3 0 1 2 0 2 2 0.0 0.00 0.08 0.08 0.00

42 LSI 0.13 0.08 0.05 3 3 3 1 3 0 3 3 1.0 3.75 0.13 0.08 0.06

43 LSI 0.13 0.13 0.00 0 0 0 0 2 2 0 0 0.1 0.94 0.14 0.14 0.00

44 LSI 0.13 0.13 0.00 3 3 0 0 3 3 0 0 0.2 0.92 0.14 0.14 0.00

45 LSI 0.13 0.13 0.00 4 4 0 0 3 2 1 0 0.0 1.07 0.02 0.02 0.00

46 LSI 0.13 0.13 0.00 3 3 0 1 3 0 3 2 0.5 0.90 0.14 0.14 0.00

47 LSI 0.12 0.12 0.00 0 0 0 0 0 0 0 0 0.0 0.03 0.06 0.06 0.00

48 LSI 0.12 0.12 0.00 3 3 0 2 2 0 2 2 0.0 4.44 0.13 0.13 0.00

49 LSI 0.12 0.12 0.00 0 0 0 0 1 1 0 0 0.0 0.07 0.09 0.09 0.00

50 LSI 0.12 0.12 0.00 3 3 0 2 2 0 2 2 0.8 0.85 0.13 0.13 0.00

0.24 0.19 0.05 3.8 3.7 0.2 2.0 4.6 1.0 3.6 3.1 0.45 2.04 0.20 0.17 0.03

Defaults EURO AREA LOSSESDistressGLOBAL LOSSESVulnerability

AVERAGE TOP 50
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both highly contagious and vulnerable. These metrics provide a useful monitoring tool to 

assess threats to euro area financial stability due to interconnectedness.  

Figure A.2: Systemic-Risk Map 

 
Note: Contagion and vulnerability indexes are normalized by dividing each index for the entity’s maximum 

value. Vulnerability index is considered in absolute terms, i.e. the % of losses experienced is multiplied by the 

capital base. 
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Appendix C 
 

Figure A.3: Heterogeneous Effects due to Changes in Model Parameters 

Panel (a) Pool of assets 

 
Panel (b) Discount Rate 

 

 
Panel (c) Distress Threshold 
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Figure A.4: Non-linear Effects due to Changes in Model Parameters 

Panel (a) Loss Given Default 

 
Panel (b) Funding Shortfall 

 
Panel (c) Liquidity Surplus 
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Figure A.5: Non-linear Effects due to Changes in Model Parameters 

Panel (a) Pool of Assets 

 
Panel (b) Discount Rate 

 
Panel (c) Distress Threshold 
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Appendix D 

𝑬𝒙𝒆𝒓𝒄𝒊𝒔𝒆 𝟏 (𝑴𝑪𝑹):  𝑐1
𝐷𝐹 = 𝑐0

𝐷𝐹 + 𝐶𝑆        ;      𝑐1
𝐷𝑆 = 𝑐0

𝐷𝑆    ;       𝑘1 = 𝑘0 + 𝐶𝑆  

𝐷𝑖𝑠𝑡𝑎𝑛𝑡 𝑡𝑜 𝑡ℎ𝑒 𝐷𝑒𝑓𝑎𝑢𝑙𝑡 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑜𝑟 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑆𝑢𝑟𝑝𝑙𝑢𝑠 (  𝑘𝑠1
𝐷𝐹):   

  𝑘𝑠1
𝐷𝐹 = 𝑘1 − 𝑐1

𝐷𝐹 =   (𝑘0 + 𝐶𝑆 )− (𝑐0
𝐷𝐹 + 𝐶𝑆) = 𝑘0 − 𝑐0

𝐷𝐹 ≡ 𝑘𝑠0
𝐷𝐹 

  𝑘𝑠1
𝐷𝑆 = 𝑘1 − 𝑐1

𝐷𝑆 =   (𝑘0 + 𝐶𝑆 )− 𝑐0
𝐷𝑆 > 𝑘𝑠0

𝐷𝑆 

𝑬𝒙𝒆𝒓𝒄𝒊𝒔𝒆 𝟐 (𝑪𝑩𝑹):  𝑐2
𝐷𝑆 = 𝑐0

𝐷𝑆 + 𝐶𝑆        ;      𝑐2
𝐷𝐹 = 𝑐0

𝐷𝐹    ;       𝑘2 = 𝑘0 + 𝐶𝑆  

𝐷𝑖𝑠𝑡𝑎𝑛𝑡 𝑡𝑜 𝑡ℎ𝑒 𝐷𝑖𝑠𝑡𝑟𝑒𝑠𝑠 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑜𝑟 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑆𝑢𝑟𝑝𝑙𝑢𝑠 (𝑘𝑠2
𝐷𝑆):   

  𝑘𝑠2
𝐷𝑆 = 𝑘2 − 𝑐2

𝐷𝑆 =   (𝑘0 + 𝐶𝑆 )− (𝑐0
𝐷𝑆 + 𝐶𝑆) = 𝑘0 − 𝑐0

𝐷𝑆 ≡ 𝑘𝑠0
𝐷𝑆 

  𝑘𝑠2
𝐷𝐹 = 𝑘2 − 𝑐2

𝐷𝐹 =   (𝑘0 + 𝐶𝑆 )− 𝑐0
𝐷𝐹 > 𝑘𝑠0

𝐷𝐹 

𝑬𝒙𝒆𝒓𝒄𝒊𝒔𝒆 𝟑 (𝑴𝑰𝑿):  𝑐3
𝐷𝐹 = 𝑐0

𝐷𝐹 +
1

2
𝐶𝑆    ;   𝑐3

𝐷𝑆 = 𝑐0
𝐷𝑆 +

1

2
𝐶𝑆     𝑘3 = 𝑘0 + 𝐶𝑆  

𝐷𝑖𝑠𝑡𝑎𝑛𝑡 𝑡𝑜 𝐵𝑜𝑡ℎ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠 𝑜𝑟 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑆𝑢𝑟𝑝𝑙𝑢𝑠 (𝑘𝑠𝐷𝐹; 𝑘𝑠𝐷𝑆):   

  𝑘𝑠3
𝐷𝐹 = 𝑘3 − 𝑐3

𝐷𝐹 =   (𝑘0 + 𝐶𝑆 )− (𝑐0
𝐷𝐹 +

1

2
𝐶𝑆) = 𝑘0 − 𝑐0

𝐷𝐹 +
1

2
𝐶𝑆 = 𝑘𝑠0

𝐷𝐹 +
1

2
𝐶𝑆 

  𝑘𝑠3
𝐷𝑆 = 𝑘3 − 𝑐3

𝐷𝑆 =   (𝑘0 + 𝐶𝑆 )− (𝑐0
𝐷𝑆 +

1

2
𝐶𝑆) = 𝑘0 − 𝑐0

𝐷𝑆 −
1

2
𝐶𝑆 ≡  𝑘𝑠0

𝐷𝑆 +
1

2
𝐶𝑆 

 


