ON THE LIMITS OF MONETARY POLICY

Stefano Eusepi (University of Texas, Austin) Marc Giannoni (Federal Reserve Bank of Dallas) Bruce Preston (The University of Melbourne)

March 21-22, 2019

The views expressed here are the authors and not representative of the views of the Federal Reserve Bank of Dallas or of the Federal Reserve System.

QUESTION

What are the consequences of loose control of long-term interest rates?

Rational Expectations Policy

- Precise control of the term structure of interest rates
- By assumption long-term expectations pinned down emphasis given to short-run stabilization questions
- One example of strong results: Divine Coincidence
 - Holds in general settings
 - Clarida, Gali and Gertler (1999), Justiniano, Primiceri and Tambalotti (2010), Gali and Debortolli (2018)

QUESTION

What are the consequences of loose control of long-term interest rates?

Sources of loose control

- ▶ Focus on the role of long-term expectations, not term premia
- Two types of relevant evidence
 - Long-term expectations have substantial low-frequency movement correlated with short-run surprises: Crump, Eusepi and Moench (2015)
 - Substantial literature adducing evidence of trend extrapolation: Fuster, Laibson and Mendel (2010)

OBJECTIVES AND FINDINGS

Empirical Model

- Medium-scale New Keynesian model with imperfect knowledge about the long run
- Agents use a forecasting model with 'shifting endpoints' low-frequency movements endogenous
 - Long-run beliefs respond to forecast errors as in the data
 - Bond prices are excessively sensitive to aggregate disturbances

Policy Design: Theory and Evidence

- Distorted interest-rate expectations a constraint on policy Monetary policy can only partially offset 'demand' shocks
- Trade-off is non-trivial in U.S. monetary history
- But: evidence Great Inflation a policy mistake

A SIMPLE ENDOWMENT ECONOMY

Optimal Consumption Decisions

► A continuum of households *i*

$$c_{t}(i) = \hat{E}_{t}^{i} \sum_{T=t}^{\infty} \beta^{T-t} \left[(1-\beta) y_{T} - \beta (i_{T} - \pi_{T+1}) \right]$$

- Optimal decisions given beliefs [Preston (2005) and Adam and Marcet (2011)]
- Decisions depend on variables outside agents' control
 - Aggregate endogenous variables and prices
 - Exogenous shocks: endowment $y_t = \rho y_{t-1} + \epsilon_t$
- Subjective beliefs \neq objective beliefs
- Captures fundamental uncertainty about the long term

A SIMPLE ENDOWMENT ECONOMY II

The transmission mechanism of monetary policy

$$c_t(i) = -\beta i_t + \hat{E}_t^i \sum_{T=t}^{\infty} \beta^{T-t} \left[(1-\beta) y_T - \beta \left(\beta i_{T+1} - \pi_{T+1} \right) \right]$$

- Precise control of current *i_t*
- Imprecise control of $\hat{E}_t^i i_T$ for T > t
- Connection between these objects endogenously determined and regulated by informational friction. Confronts policy with a distortion

MONETARY POLICY AND INFLATION

Households know monetary policy determined by the rule

$$i_t = \phi \pi_t$$

Optimal decisions and market clearing provide

$$\pi_t = -\phi^{-1}y_t + \phi^{-1}\hat{E}_t^i \sum_{T=t}^{\infty} \beta^{T-t} \left[(1-\beta) y_{T+1} - (\beta\phi - 1) \pi_{T+1} \right]$$

— Beliefs about future endowment and inflation determine inflation

— Inflation will determine beliefs—self-referentiality [Marcet and Sargent (1989)]

FORECASTING

Use a 'shifting end-points' model [Kozicki and Tinsley (2001)]Forecasting model

$$\pi_t = \bar{\omega}_{t-1} + \Phi y_{t-1} + e_t$$
$$\bar{\omega}_t = \bar{\omega}_{t-1} + u_t$$

- e_t and u_t are i.i.d. with variances R and Q, with $Q = g^2 R$
- Use Kalman filter to learn about unobserved drift, $\bar{\omega}_t$,
- Know the transitional dynamics Φ—give emphasis to short-run versus long-run uncertainty

EQUILIBRIUM DYNAMICS

• Given estimate of $\bar{\omega}_t$, ω_t , evolution of inflation given by

$$\begin{aligned} \pi_t &= -\frac{\beta - \phi^{-1}}{1 - \beta} \omega_{t-1} + \Phi y_{t-1} + \Phi_{\epsilon} \epsilon_t \\ &= T \left(\Phi \right) \omega_{t-1} + \Phi y_{t-1} + \Phi_{\epsilon} \epsilon_t \end{aligned}$$

and beliefs

$$\omega_t = \omega_{t-1} + g \left(\pi_t - \hat{E}_{t-1} \pi_t \right)$$

= $\left(1 + g[T(\Phi) - 1] \right) \omega_{t-1} + g \Phi_{\epsilon} \epsilon_t$

Informational friction

- Households overweight persistence of the drift relative to the true data-generating process: T (Φ) < 1</p>
- When Kalman gain approaches zero, nests rational expectations

$$\pi_t = \Phi y_{t-1} + \Phi_\epsilon \epsilon_t$$

THE INFORMATION FRICTION

Consistent with

- Evolution of survey forecast data professionals and households did not perceive interest rates and inflation to be mean reverting
- Tight link between surprises and long-term expectations
 —Carvalho, Eusepi, Moench and Preston (2019)
- Estimates of long-run concepts such as potential output affected by business cycle shocks
 —Coibion, Gorodnichenko and Ulate (2018)
- Over-sensivity of long-term rates to news

 Gurkaynak, Sack and Swansson (2005), Nakamura and
 Steinsson (2017), Crump, Eusepi and Moench (2017)
- Behavioral theories
 - -Bordalo, Gennaioli, Ma and Schleifer (2018), Evans,
 - Honkapohja and Williams (2010), Fuster, Laibson, Mendel (2010)

THE POLICY TRADE-OFF

Standard view

- Aggressive monetary policy provides nominal anchor by stabilizing inflation expectations
 - Clarida, Gali and Gertler (1999), Schmitt-Grohe and Uribe (2007), Orphanides and Williams (2005), Ferrero (2007), Molnar and Santoro (2013)

Our view

 Aggressive monetary policy leads to instability. Equilibrium inflation beliefs evolve as

$$\omega_t = \left(1 - g \frac{1 - \phi^{-1}}{1 - \beta}\right) \omega_{t-1} + g \Phi_{\epsilon} \epsilon_t$$

which places restrictions on policy choice

$$g < \frac{2(1-\beta)}{1-\phi^{-1}}$$

A MODEL

Standard medium-scale New Keynesian model

- No money; fixed capital stock
- Monopolistic competition
- Staggered price-setting in goods and labor markets
- Indexation in goods and labor markets
- Internal habit formation

Beliefs

Same friction as simple model. Agents extrapolate, or over-weight the importance of, trend except

$$z_t = S\bar{\omega}_{t-1} + \Phi z_{t-1} + e_t$$
$$\bar{\omega}_t = \rho\bar{\omega}_{t-1} + u_t$$

BAYESIAN ESTIMATION

Sample

Quarterly data 1964Q1-2007Q3

Observables standard

 GDP deflator, TBill 3 months, CBO output gap (de-trended output), NIPA and BLS nominal wage growth

Observables to discipline expectations

- ▶ 1Q+4Q SPF interest rate (1981Q3) and inflation (1968Q3)
- 1-10 year and 5-10 year interest rate (1985Q1) and inflation (1979Q3), Blue Chip Economics and Financial

BAYESIAN ESTIMATION II

Shocks

- AR(1): Labor preference; government spending; technology, price-markup
- IID: Monetary policy, wage markup

Measurement error

- All survey data
- The two measures of wages

POLICY AND ESTIMATES

Fiscal Policy

- Agents are Ricardian: zero debt; balanced budget
- Focus on constraints from beliefs about future interest rates
- Imperfect knowledge about fiscal policy re-weights standard income and substitution effects [Eusepi and Preston (2018)]

Monetary Policy

$$R_t = \rho_R R_{t-1} + (1 - \rho_R) \left(\phi_\pi \pi_t + \phi_x x_t \right) + \varepsilon_{M,t}$$

Estimates

 Wage Phillips curve flatter than Price Phillips curve by order of magnitude; policy coefficient φ_π close to unity

A ROAD MAP

- 1. Basic model properties and fit
- 2. The role of information frictions over-weighting trends drives low-frequency inflation
- 3. The role of monetary policy shocks in the Great Inflation
- 4. Optimal policy counterfactuals

DRIFTING EXPECTATIONS: INFLATION

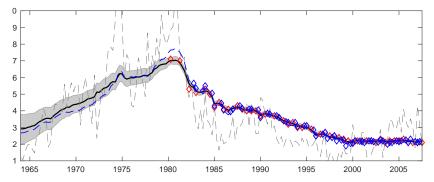


FIGURE: Model implied 5-10 year inflation forecasts (solid black); 1-10 year (dashed blue); survey data (diamonds); actual inflation (black dashed)

- Small measurement error: tight connection between short-run forecast errors and long-term forecasts
- Drift captures low-frequency movement

DRIFTING EXPECTATIONS: REAL RATES

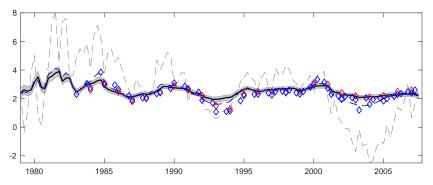


FIGURE: Model implied 5-10 year real rate forecasts (solid black); survey data (diamonds); actual real rate (black dashed)

- Independent evidence of drift in the real rate
- Consistent with Coibion, Gorodnichenko and Ulate (2018)

OUTPUT GAP

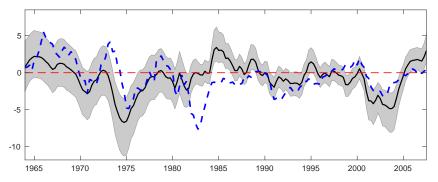


FIGURE: Model-implied output gap (solid black); CBO output gap (dashed blue).

- Captures conventional thinking about business cycles
- Under what conditions can policy close this gap?

A ROAD MAP

- 1. Basic model properties and fit
- 2. The role of information frictions overweighting trends a driver of low-frequency inflation
- 3. The role of monetary policy shocks in the Great Inflation
- 4. Optimal policy counterfactuals

Self-Fulfilling Expectations and Endogenous Trends

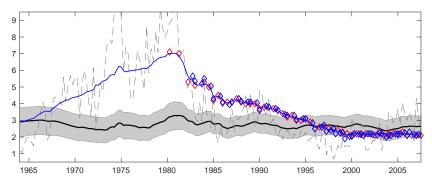


FIGURE: 5-10 year inflation forecasts. Model-implied (solid blue); survey data (diamonds); rational expectations (solid black); actual inflation (dashed)

- Rational beliefs: no Great Inflation
- Drifts endogenously generates inflation trend through propagation of forecast errors

SUBJECTIVE VERSUS OBJECTIVE BELIEFS

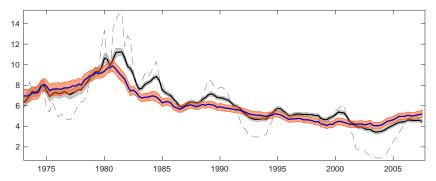


FIGURE: 10-yr Treasury yield (dashed); Yield with subjective beliefs (solid black); Yield with model consistent beliefs (solid blue)

 Sluggish adjustment of expectations over the 1980s relative to 'model consistent' expectations hypothesis

A ROAD MAP

- 1. Basic model properties and fit
- 2. The role of information frictions over-weighting trends a driver of low-frequency inflation
- 3. The role of monetary policy shocks in the Great Inflation
- 4. Optimal policy counterfactuals

THE ROLE OF MONETARY POLICY SHOCKS

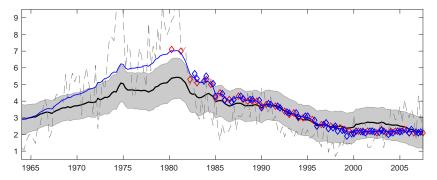
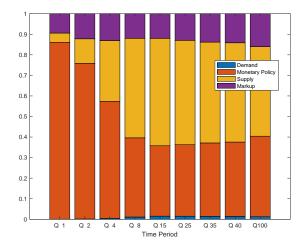
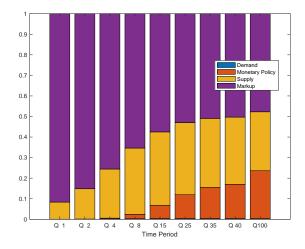
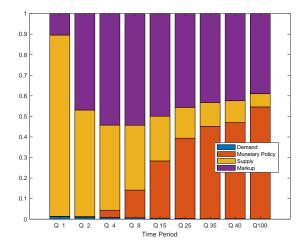



FIGURE: 5-10 year inflation forecasts. Model-implied (solid blue); survey data (diamonds); no monetary policy shocks (solid black); actual inflation (dashed)


Despite IID Monetary shocks, drivers of Great Inflation

VARIANCE DECOMPOSITION: INTEREST RATES


Monetary policy shocks important at high and low frequency

VARIANCE DECOMPOSITION: INFLATION

Monetary shocks more important at low frequency

VARIANCE DECOMPOSITION: LONG-TERM INFLATION EXPECTATIONS

Monetary shocks propagated by expectations and policy

A ROAD MAP

- 1. Basic model properties and fit
- 2. The role of information frictions over-weighting trends a driver of low-frequency inflation
- 3. The role of monetary policy shocks in the Great Inflation
- 4. Optimal policy counterfactuals

OPTIMAL POLICY PROBLEM

Rational policy maker minimizes welfare-theoretic loss

$$E_t \sum_{T=t}^{\infty} \beta^{T-t} L_T$$

where

$$L_{t} = \lambda_{p} \left(\pi_{t} - \iota_{p} \pi_{t+1} \right)^{2} + \lambda_{w} \left(\pi_{t}^{w} - \iota_{w} \pi_{t-1} \right)^{2} + \lambda_{x} \left(x_{t} - \bar{b} x_{t-1} - x^{*} \right)^{2}$$

- Subject to constraints implied by optimization and beliefs (under learning)
- Using the target criterion that is optimal under rational expectations ($TC_t = 0$) choose policy in the class

$$R_t = \rho_R R_{t-1} + \phi_\pi T C_t$$

Counterfactual assumptions — see the paper

OPTIMAL POLICY UNDER REE

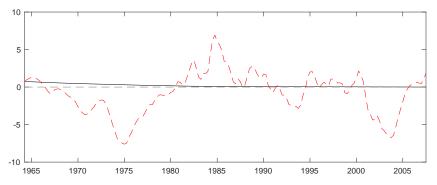


FIGURE: Output gap counterfactuals with no markup shock, rational expectations: Baseline (dashed red); optimal policy (solid black)

Justiniano, Primiceri and Tambalotti (2012) again

OPTIMAL POLICY UNDER LEARNING

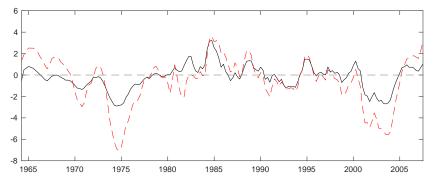


FIGURE: Output gap counterfactuals with no markup shocks, rational expectations: Baseline (dashed red); optimal policy (solid black)

- Complete stabilization of demand shocks infeasible
- Shallower recessions; consistent with inflation outcomes

LONG-TERM EXPECTATIONS: OPTIMAL POLICY

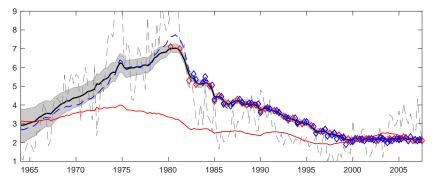


FIGURE: 5-10 yr inflation forecasts (solid black); 1-10 yr forecasts (dashed blue); survey data (diamonds); actual inflation (dashed black); 5-10 yr forecasts under optimal policy (solid red)

- Good policy still provides nominal anchor
- But remain important limits on what can be achieved

LONG-TERM RATES UNDER OPTIMAL POLICY

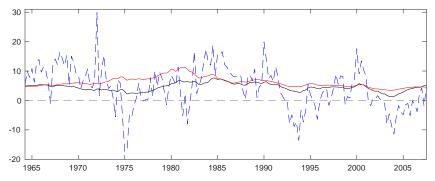


FIGURE: Baseline (solid red); optimal learning policy (solid black); optimal rational expectations policy (dashed blue)

 Interest rates more volatile under rational expectations optimal policy under learning less aggressive

CONCLUSION

- Shifting long-term interest-rate expectations constrain what can be achieved by current interest-rate policy
- Aggregate demand a constraint on policy actions policy less aggressive relative to rational expectations
- Quantitatively important
 - Demand shocks generate non-trivial variation
 - But policy still plays a critical role in proving a nominal anchor