Time Varying Structural Vector Autoregressions: Some New Perspective Andrzej (\&-J) Kociẹcki, Narodowy Bank Polski

Introduction

Motivation and Main Findings

- No identification results for TVP-SVARs (in particular Primiceri (2005))
- Some evidence that Primiceri's TVP-SVAR setup may be nonidentified (Lubik et al. (2014), Yamamura (2017))
- Identification necessary to settle the issue of sources of variability in the data (coefficients vs. volatilities)
- I failed to demonstrate nonidentifaction of Primiceri's model
- ... But I came up with the alternative TVP-SVAR, for which I gave sufficient conditions for global identification
-These suggest the following:
-TV contemporaneous relation matrix is identifed without any restrictions (i.e. you don't need Choleski scheme, actually you don't need any other one!)
- In contrast, you should severely restrict the covariance structure for TV coefficients on lagged data

My setup and contribution

My TVP-SVAR:

$$
y_{t}=c_{t}+x_{t} B_{t}+\Psi_{t} \varepsilon_{t} ; \quad \varepsilon_{t} \sim N\left(0, \mathrm{I}_{m}\right)
$$

$$
\begin{gathered}
{\left[\begin{array}{c}
c_{t} \\
B_{t}
\end{array}\right]=\left[\begin{array}{c}
c_{t-1} \\
B_{t-1}
\end{array}\right]+\left[\begin{array}{c}
\omega_{t}^{c} \\
\omega_{t}^{B}
\end{array}\right] ; \quad\left[\begin{array}{c}
\omega_{t}^{c} \\
\omega_{t}^{B}
\end{array}\right] \sim N\left(0,\left[\begin{array}{cc}
\Omega_{c} & 0 \\
0 & \Omega_{B}
\end{array}\right]\right)} \\
\left.\operatorname{vec}\left(\Psi_{t}\right)=\operatorname{vec}\left(\Psi_{t-1}\right)+u_{t} ; \quad u_{t} \sim N\left(\begin{array}{cccc}
\Sigma_{11} & 0 & \ldots & 0 \\
0 & \Sigma_{22} & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & \Sigma_{m m}
\end{array}\right]\right)
\end{gathered}
$$

NOTE: The pattern of Ψ_{t} is unrestricted!

all shocks are mutually independent, $c_{0} \sim N\left(\underline{c}_{0}, \underline{V}_{c_{0}}\right), B_{0} \sim N\left(\underline{B}_{0}, \underline{V}_{B_{0}}\right)$ and
$\operatorname{vec}\left(\Psi_{0}\right) \sim N\left(\operatorname{vec}\left(\underline{\Psi}_{0}\right),\left[\begin{array}{cccc}\left(\underline{V}_{\Psi_{0}}\right)_{11} & 0 & \cdots & 0 \\ 0 & \left(\underline{V}_{\Psi_{0}}\right)_{22} & \ldots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \left(\underline{V}_{\Psi_{0}}\right)_{m m}\end{array}\right]\right) \quad$ and $\underline{\Psi}_{0}$ is nonsingular
Let us denote the model parameters as $\theta=\left(\Omega_{c}, \Omega_{B}, \Sigma_{11}, \ldots, \Sigma_{m m}\right) \in \Theta$, initial observations as $y^{0}=\left(y_{0}, \ldots, y_{-p+1}\right)$ and let $p\left(y_{1}, \ldots, y_{T} \mid y^{0}, \theta\right)$ be the pdf of my TVP-SVAR (latent processes are integrated out, though it depends on hyperparameters)

Primiceri's setup

$$
y_{t}=c_{t}+x_{t} B_{t}+A_{t}^{-1} D_{t} \varepsilon_{t}
$$

where $\varepsilon_{t} \sim N\left(0, \mathrm{I}_{m}\right) ; x_{t}=\mathrm{I}_{m} \otimes\left(y_{t-1}^{\prime} \ldots y_{t-p}^{\prime}\right) ; A_{t}$ is lower diagonal with 1 's on the diagonal; $D_{t}=\operatorname{diag}\left(\sigma_{1, t}, \ldots, \sigma_{m, t}\right)$ and

$$
\left[\begin{array}{c}
c_{t} \\
B_{t}
\end{array}\right]=\left[\begin{array}{c}
c_{t-1} \\
B_{t-1}
\end{array}\right]+\left[\begin{array}{c}
\omega_{t}^{c} \\
\omega_{t}^{B}
\end{array}\right] ; \quad\left[\begin{array}{l}
\omega_{t}^{c} \\
\omega_{t}^{B}
\end{array}\right] \sim N\left(0,\left[\begin{array}{cc}
\Omega_{c} & \Omega_{c B} \\
\Omega_{c B}^{\prime} & \Omega_{B}
\end{array}\right]\right)
$$

In addition, let α_{t} denote all free elements in A_{t} (stacked in a column vector) and $\sigma_{t}=\left(\sigma_{1, t}, \ldots, \sigma_{m, t}\right)^{\prime}$, then

$$
\alpha_{t}=\alpha_{t-1}+\zeta_{t} ; \quad \zeta_{t} \sim N(0, S) \quad \log \sigma_{t}=\log \sigma_{t-1}+\eta_{t} ; \quad \eta_{t} \sim N(0, W)
$$

CAVEAT: Choleski scheme for $A_{t}^{-1} D_{t}$ has nothing to do with identification. Identification is about whether the parameters i.e. $\Omega_{c}, \Omega_{c B}, \Omega_{B}, S, W$ are identified. That is whether we can distinguish between all sources of variabiliity for all possible data

Empirical illustration: U.S. and 6 variables

Real GDP, unemployment rate, GDP deflator, M2 money, federal funds rate, commodity prices, 7 years training sample, effective sample 1967:Q1-2018:Q2

Key results:

DEFINITION: My TVP-SVAR is globally identified at $\theta \in \Theta$ iff $p\left(y_{1}, \ldots, y_{T} \mid y^{0}, \theta\right)=$ $p\left(y_{1}, \ldots, y_{T} \mid y^{0}, \bar{\theta}\right)$ for all $y_{1}, \ldots, y_{T} \in \mathbb{R}^{m \times T}$ implies $\theta=\bar{\theta}$

THEOREM 1:

a) Let $m=2$. Then $m y$ TVP-SVAR is globally identified at almost all Σ_{11}, Σ_{22};
b) Let $m \geq 3$. Denote the i-th row of $\underline{\Psi}_{0}^{-1}$ as l_{i}. My TVP-SVAR is globally identified at almost all $\Sigma_{11}, \Sigma_{22}, \ldots, \Sigma_{m m}$ provided that

$$
\begin{aligned}
& l_{1}\left(\Sigma_{22}+\left(\underline{V}_{\Psi_{0}}\right)_{22}\right) l_{1}^{\prime}>l_{1}\left(\Sigma_{33}+\left(\underline{V}_{\Psi_{0}}\right)_{33}\right) l_{1}^{\prime}>\ldots>l_{1}\left(\Sigma_{m m}+\left(\underline{V}_{\Psi_{0}}\right)_{m m}\right) l_{1}^{\prime} \\
& l_{2}\left(\Sigma_{11}+\left(\underline{V}_{\Psi_{0}}\right)_{11}\right) l_{2}^{\prime}>l_{2}\left(\Sigma_{33}+\left(\underline{V}_{\Psi_{0}}\right)_{33}\right) l_{2}^{\prime}>\ldots>l_{2}\left(\Sigma_{m m}+\left(\underline{V}_{\Psi_{0}}\right)_{m m}\right) l_{2}^{\prime}
\end{aligned}
$$

$$
l_{m}\left(\Sigma_{11}+\left(\underline{V}_{\Psi_{0}}\right)_{11}\right) l_{m}^{\prime}>l_{m}\left(\Sigma_{22}+\left(\underline{V}_{\Psi_{0}}\right)_{22}\right) l_{m}^{\prime}>\ldots>l_{m}\left(\Sigma_{m-1 m-1}+\left(\underline{V}_{\Psi_{0}}\right)_{m-1 m-1}\right) l_{m}^{\prime}
$$

THEOREM 2: Assume the number of lags is 2. Assume that Ω_{B} is diagonal (but Ω_{c} is just positive definite). Then my TVP-SVAR is globally identified at almost all Ω_{c}, Ω_{B} (for almost all intitial observations and hyperparameters)

Econometric contribution:

Very efficient Bayesian sampling. In contrast to Primiceri (2005), I managed to provide "pure" Gibbs sampling. That is all Gibbs steps use exact sampling from the full conditional posterior (i.e. no Metropolis-Hastings within Gibbs sampling)

