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Combination of density forecasts

e Two-step procedures
1. estimate forecast models (parameter uncertainty)
Fi(61) ; F2(62)
2. and then, estimate combination weights (weight uncertainty)
Yeri=mF+ (1 —m)F+ e
e One-step procedures
jointly addresses both weight and parameter uncertainties estimating
combination weights and forecasts' parameters simultaneously

L yern = mFu(61) + (1 — m)F2(62) + e
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e Two-step procedures
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o Bayesian Model Averaging: Raftery et al. (1997), Raftery et al. (2005)Geweke
and Whiteman (2006), Rossi and Sekhposyan (2014).

e One-step procedures
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o Infinite mixture models: Maheu and Yang (2016), Bassetti et al. (2018)
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Why a comparison between combination approaches?

e Are they the same? No
e Which one is the most accurate? It depends
e When one is more accurate than the other. Model specification, sample size,

number of individual model, ect...

Endow the DM with a tool to elicit not only the combination model but the
family they belong to
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In this paper

This paper proposes a comparison between

e Geweke and Amisano (2011) as two-step approach

e a simplified version of Waggoner and Zha (2012) as one-step approach

The comparison has carried out through:

Simulated data: M . T
acroeconomic applications:

1. Baseline

2. Single-break

3. (Multiple-break)

1. Small Dataset

2. Medium-Large Dataset



Two-step and One-step
procedures
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Two-step Procedure: the Optimal Pooling

1. A set of predictive distributions f; for a vector of time series y;
f = p(Ves1ly?, Ox) Estimate 0 through OLS.

2. are taken as given and combined according to:

K

g(ye) =D mep(ye; ye 1. fe)
k=1

where: Zle m=1mn2>0,for (k=1,...,K).

Optimal weights 7
are obtained by minimising the Kullback-Leiber Information Criterion (KLIC):

.
1

* — - |

Tic = argmax - E n g(y:)

=1

Following Hall and Mitchell (2007) and Conflitti et al. (2015) 10



One-step Procedure: Finite Mixture of Distributions Model

A standard Finite Mixture Distribution is used as limiting case of the Markov
Switching Model (Waggoner and Zha, 2012):
K

P(yt|}/$,1,0k) = Zp(ytlygfhst = k70k)’Dr(5f = k|)/t07170k)
(=il
K

p(yely?1,06) = p(yelyi_1,6x)
k=1
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One-step Procedure: Finite Mixture of Distributions Model

A standard Finite Mixture Distribution is used as limiting case of the Markov
Switching Model (Waggoner and Zha, 2012):

K
p(yely?1,06) =Y p(yelyi-1, St = k, 0k)Pr(Se = klyf_1, 64)
(=il
K
p(yelylo1,06) = p(velye—1:06) 1
k=1

The weights are distributed according to

m~ M| 1 prfn(ye; p1e, %) prcu(ye: pkc.e, 0%)
’ K joocy =
Zk:] Pkf/\/(}/t; Nk,tvai) Zk:l Pka()/t; Lkt ‘71%)

where px = (p1, .-, pk), 0 < pxr < 1 and Zle px = 1.
Bayesian estimation with Gibbs sampling algorithm following Friihwirth-Schnatter

(2006) =D 1



Evaluation of Density Forecasts

o Logarithmic Scoring Rule: LS(g(Y;), A) = log (gi Y:|A:)

e Continuous Ranked Probability Scores:

+o0
CRPS = / (g(Yis1) — Yt+1)2dy
“+o00

TW-CRPS = / (g(2) = 1{ Y1 < z})?w(z)dz

— 00
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Evaluation of Density Forecasts

o Logarithmic Scoring Rule: LS(g(Y;), A) = log (gi Y:|A:)

e Continuous Ranked Probability Scores:

+o0
CRPS = / (g(Yis1) — Yt+1)2dy
“+o00

TW-CRPS = / (g(2) = 1{ Y1 < z})?w(z)dz

— 00

o Probability Integral Transforms (PITs): the density forecast is called
“calibrated” if z; is uniform:

= " (vd(ve)

o0
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Comparison with simulated data




No-break

Accuracy Loss: (CRPScomb — CRPSDGP)/CRPSDGP

e Data Generating Process (sample sizes T = {50,200, 1000})

Y = 0.5 + O.8yt_1 + €+ Et I’@/ (0705)
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e
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Single-Break Scenario: DGP Setups

e Data Generating Process

iid
e =OX; +e¢ 6r ~ (0,0’5)

' [po =05 ¢ =08 ¢o=0], ift<T,
Xe= | yi-1 b = -
Xe_1 [po+do P1+di ¢p+da], FT<t<T.

T = {50,200, 1000} and T, = {0.25,0.50,0.75,0.95} of T.
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Single-Break Scenario: DGP Setups

e Data Generating Process

iid
e =OX; +e¢ 6r ~ (0,05)

[po =05 ¢1=08 ¢=0], ift<T,
[po+do d1+ch dot+dco], IfTp<t<T.

T = {50,200, 1000} and T, = {0.25,0.50,0.75,0.95} of T.

e Predictive distributions f; can be:

Nonnested case: Nested case:
fityren ~ N (0o + bryrin-1,62) fityran ~ N (0o + bryrin-1,62)
bt yran ~ N (Bo + Bixrih-1,62) bt yran ~ N (0o + ryrin-1 + Bixrin-1,62)

fi and £, are combined treating the break as unknown
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Single-break scenario: Types of break

exp. # | do di  d» o? Comments
1 0 0 0 06 no breaks
2 -0.4 0 0 06 small break in the intercept
8 -06 0 0 06 large break in the intercept
4 0 -02 0 06 small break in AR(1) dynamics
5 0 -04 0 06 large break in AR(1) dynamics
6 0 0 0.5 0.6 Small break in exo. var. coefficient
7 0 0 1 06 Large break in exo. var. coefficient
8 0 -0.2 05 0.6 | Breaksin AR(1) and exo. var. coefficients
9 0 0 0 2 Increase in post-break variance
10 0 0 0 03 Decrease in post-break variance
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Single-break Nonnested case

Accuracy Loss: (CRPScomb — CRPSDGP)/CRPSDGP

Error Variance AR dynamics Intercept

Small Break

Large Break
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Single-break Nonnested case

Accuracy Loss: (CRPScomb — CRPSDGP)/CRPSDGP

Small Break Exogenous Variable
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Single-break Nested case

Accuracy Loss: (CRPScomb — CRPSDGP)/CRPSDGP

Small Break Large Break
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Single-break Nested case

Accuracy Loss: (CRPScomb — CRPSDGP)/CRPSDGP

Small Break Exogenous Variable
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Empirical Applications




Forecasting GDP with industrial Production Index and

Employment rate

Forecasting Real Output growth rate for US based on

Industrial Production Index and Non-farm payroll employment

In-sample forecast
from 1964:Q1 to 2018:Q1

One-step ahead rolling-window forecasts

Using two datasets:

1. Ex-post revised data (FRED database)
2. Real-time data (Philadelphia Fed database)

20



Forecasting GDP with industrial Production Index and

Employment rate

e Two predictive regressions:
° yt{il =an:t+y b, ,3:',tyf_,' + ZjQ:O Sj,tIPt—j +¢e1,+ and
O ytil\{P = 0o, + 27:0 Bi,t}’&,‘ + Z,,N:O Ant EMP:_p + €2+
where g, ~ N(O, U,it).
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Forecasting GDP with industrial Production Index and

Employment rate

e Two predictive regressions:
o yifi=ane+ Y0 Byl + 320 0elPej+ €1 and
oy =do.+ PR Bi,t)’r‘:i + Z,,N:o Ant EMPe_p + €2,
where g4 ; ~ N(0, 07 ,).
e Forecasts combined according to
K=2
P (yer1lye, Ok,e) = i, eP(Yer1lys s Ok t)
k=1
Where @ ; = {ak.r, 8¢, BitsYnt, Os 4y Mkt are estimated according to the
one-step and two-step procedures

One-step and Two-step procedures compared with respect to:
e a benchmark AR(1) model
e both density and point forecasts
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Macroeconomic Application - Results

Ex-Post Revised data

AR(1) 2-step 1-step

Log Score | -0.0818 -1.1765 -0.9134 Ex-post revised data

(0.000)  (0.000)
(0.000)

CRPS 0.2289 0.4879 0.1331

(0.000)  (0.000)
(0.000)

TW-CRPS | 0.2289 0.4880 0.1330

(0.000)  (0.000)
(0.000)

MSPE 0.2209 0.2215 0.2220

(0.8236)  (0.3923)
(0.8236) 0 0.2 0.4 0.6 0.8 1

Real-Time data

AR(1) 2-step 1-step .
Log Score | -0.9208  -0.9974  -0.9126 Real-Time data
(0.000)  (0.000)
(0.000)
CRPS 0.1008 0.2916 0.0756
(0.000)  (0.000)
(0.000)
TW-CRPS | 0.1008 0.2916 0.0760
(0.000)  (0.000)
(0.000)
MSPE 0.3629 0.3573 0.3914
(0.3964)  (0.0362)
(0.0521) 0 0.2 0.4 0.6 0.8 1




Forecasting US GDP and Inflation in a Large Macroeconomic

Dataset

Forecasting Real Output growth and Inflation rate for US based on
e Replicate Rossi and Sekhposyan (2014)

Subsample of Stock and Watson (2003) dataset €=

In-sample forecast

from 1984:Q1 to 2010:Q3

One-step ahead rolling-window forecasts of 40 observations
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Forecasting US GDP and Inflation in a Large Macroeconomic

Dataset

e K=32 forecasting models:
Yer1,k = Bo + Pr(L)Xe ko + Bo k(L) ye + €141,k
where ey ~ N(0,02,), Bi(L) = Y, o Bl
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Forecasting US GDP and Inflation in a Large Macroeconomic

Dataset

e K=32 forecasting models:
Yer1,k = Bo + Pr(L)Xe ko + Bo k(L) ye + €141,k

where ey ~ N(0,02,), Bi(L) = Y, o Bl
e Forecasts combined according to
K

p(yeraly? Oke) = > mkp(Ver1ly?, Ok.e)
k=1

Where &, ; = { ji.t-”i,r nk.:} are estimated according to the one-step and
two-step procedures

One-step and Two-step procedures compared with respect to:

e a benchmark AR(1) model
e BMA pooling model as in Rossi and Sekhposyan (2014)

24



Large Macroeconomic Dataset Application - Results

AR(1)  2-stepCM  2-stepBMA 1-step
LogScore | -0.9258 -0.9376 -0.9247 -0.9300
(0) (0.3003) (0)
(0) (0.0008)
(0)
CRPS 0.2312 0.2406 0.2310 0.2374
(0) (0.6521) (0)
(0.0006)  (0.0966)
(0)
TW-CRPS | 0.2313 0.2408 0.2311 0.2372
(0) (0.6239) (0)
(0.0006) (0.0737)
(0)
AR(1) 2-step CM  2-step BMA  1-step
Log Score | -0.9220  -0.9278 -0.9212 -1.1458
(0.0062)  (0.0008) )
(0.0025) (0)
(0)
CRPS 0.2427 0.2467 0.2426 0.5211
(0.0118) (0.9014) (0)
(0.0113) (0)
©)
TW-CRPS | 0.2429 0.2466 0.2425 0.5211
(0.0178)  (0.0015) (0)
(0.0103) (0)

(0)

GDP

Inflation
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Conclusions

To elicit the combination approaches, the DM has to account for:

e Individual models specification:

e Nested in favour of one-step approach
e Nonnested in favour of two-step approach

e Number of models to combine:

e Two-step is not affected by the number of individual models
e Carefully accounting for large dataset estimating the one-step approach.
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Appendix



Conflitti et al. (2015)

-
L1
o)) = = Y In g(¥,) 1)
t=1
where wdpT maximises Cb(wj*) subject to the constraints w; > 0 and ijzl wj = 1.

Let us define the T x J matrix G composed by nonnegative elements étj = 8:(Yy).
Then equation 1 can be rewritten as:

d(wf) = %Z In (Gw;). (2)

Let as introduce the following Lagrange multiplier A to take into account the
constraints of the weights:

o) = 33 () =AY 3)



Following Conflitti et al. (2015), we introduce a “surrogate” cost function depending
on a vector of arbitrary weights aj;, such that:

3 m m
\VA(WJ,QJ TZZ JfG{ ( Z Jtaj> —/\ZWJ'. (4)
t=1 j=1 Zj 1 jtdj =] =
Let us define the following algorithm for k numbers of iterations:
wj-";fl = ElfEliE \UA(wﬁwﬁ)\) (5)

Rewriting last equation in terms of wJ’-‘, the iterative algorithm becomes:

A

Wkt — ok 1 GJt 6
=g Z ST Gt (6)
The nonnegative constrain is satisfied imposing positive weights that sum to one as
initial values (i.e. wJ‘-) = 1/m). The iterates are expected to converge to the
maximiser wgpr due to the monotonicity of the cost function in (4) and the
constraints. The algorithm has also a stop criterion based on negligible difference
between two successive iterates.



Description of Data Series

Label Trans Period Name Description Source
Asset Prices
rovnght@us  level  59:M1-10:M9 FEDFUNDS Int. Rate: Fed Funds (Effective) F
rtbill@us level  59:M1-10:M9 TB3MS Int. Rate: 3-Mn Tr. Bill, Sec Mkt Rate F
rbnds@us level  59:M1-10:M9 GS1 Int. Rate: US Tr. Const. Mat., 1-Yr F
rbndm@us level  59:M1-10:M9 GS5 Int. Rate: US Tr. Const. Mat., 5-Yr F
rbndlQ@us level  59:M1-10:M9 GS10 Int. Rate: US Tr. Const. Mat., 10-Yr F
stockp@us Aln 59:M1-10:M9 SP500 US Share Prices: S&P 500 F
exrate@us Aln 73:M1-10:M9 111 NEER |
Real Activity
rgdpQus Aln 59:Q1-10:Q3 GDPC12 Real GDP, sa B
ipQus Aln 59:M1-10:M9 INDPRO Industrial Production Index, sa F
capu@us level  59:M1-10:M9 CUMFNS Capacity Utilization Rate: Man., sa F
emp@ Aln 59:M1-10:M9 CE160V Civilian Employment: thsnds,sa F
unemp@us level  59:M1-10:M9 UNRATE Civilian Unemployment,sa F
Wages and Prices
pgdp@us Aln 59:Q1-10:Q3 GDPDEF GDP Deflator, sa F
cpi@us Aln 59:M1-10:M9  CPIAUCSL CPI: Urban, All items, sa F
ppi@us Aln 59:M1-10:M9 PPIACO Producer Price Index, nsa F
earnQus Aln 59:M1-10:M9  AHEMAN Hourly Earnings: Man., nsa B
Money
mon0Qus Aln 59:M1-10:M9 AMBSL Monetary Base, sa |
mon1@us Aln 59:M1-10:M9 M1SL Money: M1, sa |
mon20@us Aln 59:M1-10:M9 M2SL Money: M2, sa |
mon3Q@us Aln 59:M1-06:M2 M3SL Money: M3, sa |




One-step procedure - Bayesian Inference

Bayesian inference technique of MCMC estimation using data augmentation and
Gibbs sampling.
Posterior Distributions are:
e Combination Weights nx: p(nk|S) ~ D(ei(S),. .., ex(S))
e Autoregressive parameters ok: p(Prloz, y2, 8) ~ N (ak, Ax)
where A, = (Ay* + 2zkzk) Vo a=A(Ayta + 2zkyk)

e Variances 07: p(ok|Ok,y2, 8™ 1) ~ G (ck, Ck)
where ¢, = ¢g + %, Ce=C+ 1€k€k and ¢, = yf — Zy .

A common choice of prior takes the form:

2
p(0x) = D(eo, &]S) H (Pk|ao, Ao)G (07| co, Go)-
k=1



One-step procedure - Bayesian Inference

Dealing with Label Switching

K K
p(ytlOk, k) = anﬁv(ytIOk) = an(k)fN(ytw/)(k))
k=1 k=1

where p is an arbitrary permutation of {1,..., K}.

.



3. Multi-break Scenario

Ye=®X; +¢e; €tﬁ(0705)
1 [0 =05 ¢1=08 ¢2=0], ift<Ts
Xe=| yi-1 S=1< [pot+dyo 1+ ¢at+da], IfTp<t<T, (7)
Xe—1 [po+di d1+df ¢o+di], fTc<t<T

T = {50,200,1000}, T, =0.25, T, =0.75 of T.

exp#| dy di b df di di o? Comments

11 |-02 0 0 0 0 0 06 mean reversion in intercept

12 |-02 0 0 -04 0 0 0.6| decreasing trend in the intercept
13 0 -020 0 0 0 06 mean reversion in AR dynamics

14 0 -02 0 0 -04 0 0.6| decreasingtrendin AR dynamics
15 0 02 0 0 04 0 06 increasing trend in AR dynamics
16 0 0 1 0 0 0 0.6|mean reversion in predictor coefficient
17 0 0 1 0 0 2 0.6]trending break in predictor coefficient
18 0 0 0 0O O o0 2 increase in post-break variance

19 0 0 0 0O O o003 decrease in post-break variance




e Individual Models
Nested case:

Nonnested case:
fi 2 yren ~ N (0o + O1y14n-1,62) Aiyren~ N(9o +biyrin-1, 62)
62) fo:yTin ™~ /\/(90 + 91)/T+h 1+ 51XT+h 1,62
2
£3

bt yren ~N(Bo + Pixrin-1,62,
£t yren ~ N (Bo + Bixrn-1,62) f3 i yron ~ N (o + bryrin_1 + Pixrin-1,6

N

° 90,/30,91,&1,081,0 are estimated by Two-step and One-step approach,

e f; and f, are combined treating the break as unknown.



3. Multi-break Results

Nonnested Case

Exp.11 Exp.12

Exp.11

Nested case
Exp.12

Exp.13
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04 \ 04 \\ ,
0.2 \ 0.2 \\\ 05 N
) I = N = : =
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1 ] — 0.2 2
, |, = [
T=50 T=200 T=1000 T=50 T=200 T=1000 T=50 T=200 T=1000| T=50 T=200




Algorithm for large dataset Application

Start from some initial values of S° and repeat the following steps M times after a
burn-in period long M.
1. parameter simulation conditional on the allocation S™~! (as in algorithm (1)):
1.1 Sample 7 from the conditional Dirichlet posterior p(7x|S) as in algorithm (1);
1.2 Sample each regression coefficient ¢ = (¢1,0, P1,1, ¢2,0, @2,1, ¢2,2) jointly from the
posterior distribution p(¢|o7, y2, S™ 1) ~ N (ak, Ax) as in algorithm (1);
1.3 Sample the random hyperparameter Cy from p(Co|S™ ™, xipx, o2, v ~ G(gn, Gn);
1.4 Sample each variance o7 from the posterior distribution |, y2, §™ ! ~ G (cx, Ck)
Where ¢, = co + % and Ci = Go + Leje
2. Classification of each observation y; conditional on 8: sample each element of S; of
S™ from the conditional posterior p(S¢|¢, 02, y?) given by:

Pr(Si = k|p,0%,y?) o< nifn(ys; Xibw, o%)

The posterior density estimated from the MCMC draws is:

P(yes1ly?, Ok) = M Mo /\/l Z (Z i P(yes1|0F t+1)>



Preliminary Conclusions

1. Combination of two AR models suggests the superiority of one-step procedure
with sufficiently large sample size;

2. In presence of breaks:
2.1 The specification of individual models matters

e Nonnested case: Two-step is more accurate;

o Nested case: One-step is more accurate;
2.2 The type of break matters:

e One-step performs better when the break regards exogenous variables.
2.3 The sample size matters:

e In the nonnested case, two-step becomes more accurate than one-step

e In the nested case, one-step becomes more accurate than two-step

2.4 No clear information from the timing of the break.
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