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Motivation

Bitcoin is the first decentralized cryptocurrency created in 2009 and documented in
Nakamoto (2009).
Since its inception, it gained a growing attention from the media, academics, and
finance industry
In recent months the global interest in Bitcoin and crypto–currencies has spiked
dramatically:

Japan has recognized Bitcoin as a legal method of payment;
some central banks are exploring the use of the crypto–currencies;
a large number of companies and banks created the Enterprise Ethereum Alliance to
make use of the crypto–currencies and the related technology called blockchain, Forbes
(2017).
Finally the Chicago Mercantile Exchange (CME) stated the negotiation of Bitcoin
futures on 18th of December 2017, see Exchange (2017). Nasdaq and Tokyo Financial
Exchange will follow late in 2018, see Bloomberg (2017).

All this interest has been reflected on the crypto–currencies market capitalization
that exploded from around 19 billion in February 2017 to around 850 billion in
January 2018.
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Motivation

The dynamic of those series is quite complex displaying:
extreme observations;
asymmetries;
nonlinear characteristics which are difficult to model.

New econometric models to study the characteristics of those series are needed.

As this new and unexplored market will develop, those models will be important for
asset allocation, risk management, and pricing of derivative securities.

Leopoldo Catania (Aarhus BSS) Modelling and Predicting Crypto–Currencies Financial Time–Series January 25, 2018 3 / 45



Bitcoin
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Literature review: Cryptocurrency

Although Bitcoin can be considered to be relatively new, there has already been
some initial analysis into the crypto–currency.
Hencic and Gourieroux (2014) applied a non–causal autoregressive model to detect
the presence of bubbles in the Bitcoin/USD exchange rate.
Sapuric and Kokkinaki (2014) measure volatility of Bitcoin exchange rate against six
major currencies.
Caporale et. al (2017) examines the persistence in Crytocurrency.
Chu et al. (2015) provide a statistical analysis of the log–returns of the exchange
rate of Bitcoin versus the USD. They found that the Generalized Hyperbolic
distribution seems to be the most appropriate choice to model the unconditional
distribution of crypto–currencies time–series.
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Literature review: GAS model

Generalised Autoregressive Score (GAS) models have been recently introduced by
Creal et al. (2013) and Harvey (2013).
These are observation driven models in the sense of Cox (1981) which implies that
the likelihood function is available in closed form, i.e., there is no need to resort to
computational intensive simulation methods.
Their general specification assume:

yt |Ft−1 ∼ D(θt , ψ)

θt = Λ(θ̃t )

θ̃t = κ+ Aũt−1 + Bθ̃t−1

where

ũt ∝
∂ log p(yt ; θ, ψ)

∂θ

∣∣∣
θ=θt

,

i.e.: ũt is proportional to the score with respect to the θt parameter.
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GAS or GARCH: Different volatility reaction

The plain GARCH(1,1) model:

yt = σtεt , εt
iid∼ (0, 1)

σ2
t = ω + αy 2

t−1 + βσ2
t−1

can be written as:

σ2
t = ω + φσ2

t−1 + ασ2
t−1ut−1

where φ = α + β and ut = y 2
t /σ

2
t − 1 is a Martingale Difference (MD).

A GAS model with Student’s t innovations with ν degrees of freedom would imply:

ut = (ν + 1)y 2
t

(ν − 2)σ2
t + y 2

t
− 1
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Does it really matter? Yes.

Impact of ut for ν = 3 (thick), ν = 6 (medium dashed), ν = 10 (thin) and ν = ∞ (dashed).
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GAS or GARCH ?

Taken from Harvey (2013)

Absolute Apple returns and estimated volatility for GARCH and GAS with Student’s t distribution.
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GAS or GARCH ?

Taken from www.gasmodel.com

GAS estimated volatility for Nordpool electricity prices. Gaussian GAS is equivalent to Gaussian GARCH.

Leopoldo Catania (Aarhus BSS) Modelling and Predicting Crypto–Currencies Financial Time–Series January 25, 2018 10 / 45

http://www.gasmodel.com


Methodological contributions of the paper

In Catania and Grassi (2017) we propose a new Generalized Autoregressive Score
driven model where the conditional distribution of the data, is assumed to follow the
Generalized Hyperbolic Skew Student’s t law (GAS-GHSKT);
Moreover we extend Lucas et al. (2014) and Lucas et al. (2017) in several directions:

we derive expressions in a univariate framework, these cannot be easily recovered from
Lucas et al. (2014),
we investigate in deep the characteristics of the filter implied for the volatility update
using asymmetric tail behaviour of the GHSKT distribution.
we extend the model in order to account for several features such as:

leverage effects;
long memory properties of the volatility process;
time–varying higher order moments.
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Empirical contributions of the paper

We examine the dynamic properties (not the unconditional distribution) of
crypto–currencies financial time–series.
We also investigate a large set of crypto–currencies (289 series), which to the best
of our knowledge has not been done yet.
We investigate for the presence of leverage effects; long memory and time–varying
higher order moments.
We provide a forecasting exercise.
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Model

Let yt be the realization of the series of interest (e.g. Bitcoin) at time t, we assume:

Yt = ς + exp(ht )εt , εt
iid∼ GHSKT (0, 1, θ), (1)

ht = φ(ht−1, yt−1; φ), (2)

where ς is a constant, ht is the log–volatility obtained as a function of the past
log–volatility level, ht−1, and the realization yt−1, via the known function
φ : <× < → <+.
The function φ constitutes the filter for the volatility and characterises the model
specification, for example, when

φ(ht−1, yt−1, ψ) = (1/2) log(φ0 + φ1(yt−1 − ς)2 + φ2 exp(2ht−1))

where ψ = (φ0, φ1, φ2, ς)′, we obtain the popular GARCH specification of Bollerslev
(1986).
The only source of error affecting the dynamic system, εt , is assumed to be
distributed independently as a standardized GHSKT.
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The filter φ, in Generalized Autoregressive Score specification

Following Creal et al. (2013) and Harvey (2013) calculating the score of the conditional
distribution (Yt |yt−1

1 ), with respect to the log–volatility ht we get the following model:

ht = φ(ht−1, yt−1), (3)

= κh(1− βh) + αhuh
t−1 + βhht−1, (4)

where:
uh

t is the score of the conditional distribution (Yt |yt−1
1 ) with respect to ht ;

κ = E[ht ] (since ut is a Martingale Difference with respect to (Yt |yt−1
1 ) for all t) is

the unconditional log–volatility level;
|βh| < 1 is an autoregressive parameter controlling the persistence of the
log–volatility process;
αh > 0 is the parameter associated to the score which determines the step of the
log–volatility update. Positiveness of αh is assumed in order to not distort the signal
given by the score, see Creal et al. (2013).
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Monte Carlo experiment

κh αh βh ς β̄ ν

T = 500
BIAS 0.003 0.001 -0.077 0.000 1.099 1.763
RMSE 0.043 0.019 0.205 0.043 4.109 5.130
SD 0.042 0.019 0.190 0.043 3.959 4.817

T = 750
BIAS 0.001 0.001 -0.042 0.000 0.477 0.925
RMSE 0.017 0.015 0.139 0.035 1.440 2.723
SD 0.017 0.015 0.133 0.035 1.359 2.562

T = 1000
BIAS 0.000 0.001 -0.026 0.000 0.318 0.635
RMSE 0.010 0.012 0.100 0.030 0.990 2.027
SD 0.010 0.012 0.096 0.030 0.938 1.926

T = 2000
BIAS 0.000 0.000 -0.009 0.000 0.147 0.307
RMSE 0.004 0.008 0.037 0.021 0.520 1.176
SD 0.004 0.008 0.036 0.021 0.499 1.135

The coefficients’ value are similar to those found in the empirical study on
crypto–currencies: κh = 0, αh = 0.04, βh = 0.94, ς = 0, β̄ = 1.5, ν = 7.0.
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First extension of GAS-GHSKT: Long Memory

Long memory of the volatility process is a very well–known feature of financial
returns, see Andersen et al. (2001).
The time–series literature developed three main methodologies to incorporate this
feature in dynamic models which are:

i) fractional integration (Palma, 2007)
ii) multiple components models (Andersen et al., 2006)
iii) via the so–called heterogeneous autoregressive framework introduced by Corsi (2009).

Here we use multiple components rewriting the filtering equation as:

ht = κh +
L∑

l=1

ht,l , (5)

ht,l = βh
l ht−1,l + αh

l uh
t−1, (6)

where
L is the number of components;
h1,l = 0 and βh

l > βh
l−1, are imposed for identifiability purposes. Namely, the

log–volatility process is now defined as a sum of autoregressive processes with different
autoregressive parameters and same forcing variable uh

t .
The process {ht , t > 0} is still weekly stationary (provided the existence of E [uh

t
2]).
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Long Memory plot by components
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Autocorrelation function evaluated for one (dotted, blue) and two (dashed, red) components
(L = 2) GHSKT volatility model. One standard deviation confidence bands are reported in gray.
Parameter values driving the volatility dynamic are: κh = 0, αh = 0.06, βh = 0.84 for the one
component model and: κh = 0, αh

1 = 0.04, αh
2 = 0.06, βh

1 = 0.98, and βh
2 = 0.84 for the two

component model.
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Second extension of GAS-GHSKT: Leverage effect

Leverage effects refer to the asymmetric reaction of the volatility process to past
positive and negative returns, a stylised fact which dates back to Crane (1959).
A Score–Driven volatility model with the inclusion of leverage effect has first been
introduced by Harvey (2013).
Following Harvey’s implementation, we rewrite the main GAS equation as:

ht = κh(1− βh) + αhuh
t−1 + βhht−1 + γhsgn(−(yt−1 − ς))(ut−1 + 1),

where γh is an additional parameter and sgn(·) is the sign function.
Since we want to keep the moment condition E[ht ] = κh, the filter is modified as:

ht = κh(1− βh − γh$) + αhuh
t−1 + βhht−1 + γhsgn(−(yt−1 − ς))(ut−1 + 1),

where $ = 2P(εt < 0)− 1.
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News impact curve
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NIC with the inclusion of the leverage effect component for different values of γ: solid (black)
line γ = 0; dashed (red) line γ = 0.3; dotted (blue) line γ = 0.6. The other parameters as set as
follows: αh = 1, κh = 0, β̄ = −0.5 and ν = 7.0.
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Third extension of GAS-GHSKT: Time–varying higher order moments

The inclusion of time–varying higher order moments for financial time–series dates
back to the Autoregressive Conditional Density model of Hansen (1994).
Before the development of Score–Driven models, the modeling of higher order
moments was performed via ad hoc procedures. The usual methodology was that of
including arbitrary transformations of past returns
In the Score–Driven methodology the inclusion of time–varying higher order
moments for financial time–series is easy see Lucas and Zhang (2016) and Bernardi
and Catania (2016).
Time–varying higher order are obtained by letting the skewness (β̄) and shape (ν)
parameters to be updated according to a GAS process.
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Empirical Experiment

The data used in this study are the crypto–currencies closing prices. Those data are
freely available from https://coinmarketcap.com/
Since the introduction of Bitcoin in 2009, hundreds of other crypto–currencies have
been created and, as of Janualy 2018, 1440 crypto–currencies exist.
Some of them, do not represent serious attempts at establishing a foothold in the
market, others are quite young with just a few useful observations.
For this reason, we focus on coins with at least 700 observations, which correspond
to almost 2 years of data, this leaves us with 289 series.
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Empirical Experiment

We group each series into three categories based on the market capitalization that
are:

i) Large Cap (top 20%)
ii) Mid Cap (between 40% and 60%)
iii) Small Cap (lower 20%).

We report results at the aggregate level (All), for the three categories (Large, Mid
and Small Cap), and for the four major crypto–currencies:

i) Bitcoin
ii) Ethereum
iii) Ripple
iv) Litecoin.
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Four principal crypto–currencies

Coin Bitcoin Ethereum Ripple Litecoin
Nr. Obs. 1497 702 1412 1437
Created 03-Jan-09 01-Aug-14 01-Jul-13 01-Nov-13
Purpose Payment System Smart Contract Currency exchange Payment System
Supply 21 Millions Total 18 Millions Yearly 100 Billions Total 84 Millions Total
Market Cap 200 Billions 44 Billions 9.5 Billions 5.5 Billions
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In sample results
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Score–Driven GHSKT vs GARCH–GHSKT

The GARCH model with the same conditional distributional assumption, is defined
as

yt =ς + σtεt , εt ∼ GHSKT (0, 1, β̄, ν), (7)
σ2

t =ζ0 + ζ1(yt−1 − ς)2 + ζ2σ
2
t−1, (8)

where ζi > 0, for i = 0, 1, 2 and ζ1 + ζ2 < 1, see Bollerslev (1986).
It is worth noting that the NIC implied by the GARCH filter is quadratic in the
residual yt − ς, and hence different from the one implied by the Score–Driven filter;
it is not robust to extreme observations.
The number of parameters for the GARCH and Score–Driven model is the same;
model comparison can be performed by a simple likelihood comparison.
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Kernel density estimated on the likelihood percentage increase between
GHSKT Score–Driven and GARCH–GHSKT model
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Kernel density estimated on the likelihood percentage increase between the GHSKT Score–Driven
model and the GARCH–GHSKT model. Positive values indicate outperformance of the GHSKT
Score–Driven with respect to the GARCH–GHSKT alternative.
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Filtered volatility between GHSKT Score–Driven and GARCH–GHSKT
model
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Filtered conditional variances for Bitcoin (left) and Ripple (right) delivered by the Score–Driven
GHSKT model (black dashed line) and the GARCH (red solid line).
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Long memory component

# Bitcoin Ethereum Ripple Litecoin Small Cap Mid Cap Large Cap All
Panel (a): AIC
1 x x – – 35 33 25 28
2 – – – x 58 61 61 65
3 – – x – 7 4 14 7
4 – – – – 0 2 0 0
Panel (b): BIC
1 x x – x 75 74 65 66
2 – – x – 25 26 35 34
3 – – – – 0 0 0 0
4 – – – – 0 0 0 0
Panel (c): HQ
1 x x – – 51 56 37 44
2 – – x x 49 44 61 56
3 – – – – 0 0 2 1
4 – – – – 0 0 0 0
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Leverage component

Bitcoin Ethereum Ripple Litecoin Small Cap Mid Cap Large Cap All
AIC – x x x 54 46 72 57
BIC – – x – 26 19 44 30
HQ – – x – 42 32 58 42

Comparison between models with and without the leverage component. Comparison is made
according to the three information criteria: AIC, BIC, and HQ.
The label x indicates preference with respect to the model with the leverage component, the
label −− indicates the opposite. Columns 5 to 8 report the percentage of times the model with
the inclusion of the leverage component is preferred for the three groups: Small Cap, Mid Cap,
and Large Cap, as well as over the full sample (All).
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Time–varying Higher Order Moments

Bitcoin Ethereum Ripple Litecoin Small Cap Mid Cap Large Cap All
Panel (a): Time–varying Skewness
AIC – x – – 35 35 49 41
BIC – – – – 11 7 26 14
HQ – – – – 25 23 39 28
Panel (b): Time–varying Kurtosis
AIC – – – – 0 0 0 0
BIC – – – – 0 0 0 0
HQ – – – – 0 0 0 0
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Time–varying Higher Order Moments
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Figure: Filtered volatility (σt ) and skewness parameter (β̄t ) for Bitcoin and Ethereum over the
full sample.
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Time–varying Higher Order Moments
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sample.
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Out of sample results
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Quantitative risk management applications

In Catania et al. (2018a) we study the benefits of a robust filter for the volatility
process of crypto–currencies time–series, we report a forecasting analysis comparing
predictions delivered by the robust Score–Driven GHSKT filter and the GARCH filter.

The quantity of interest for this analysis is the H–step ahead Value–at–Risk (VaR)
level of the crypto–currency time–series at confidence level α ∈ (0, 1).

Starting from our data set of 289 time–series, we select those with a sample size of
at least 1.200 observations leaving us with 49 series. The in–sample size of the first
forecast is set to T = 600, such that we have at least 600 predictions in order to
compare the two models. Models’ parameters are estimated using the first 600
observations and subsequently getting updated each time a new observation
becomes available using an extending window.
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Quantitative risk management applications

For both models, multi step ahead predictions (H > 1) of the VaR level are
computed by Monte Carlo simulation using 10.000 draws from the predictive
distribution.
In order to compare the Score–Driven and GARCH GHSKT models we compute the
quantile loss associated to each VaR prediction delivered by the two models.
Given a prediction VaRα

T +H|T , and the realization of the crypto–currency log–return,
yT +H , the quantile loss is defined as:

QLαT +H|T = (α− 1{yT +H<VaRα
T +H|T }

)(yT +H − VaRα
T +H|T ), (9)

where 1{yT +H<VaRα
T +H|T }

= 1 if yT +H < VaRα
T +H|T and zero otherwise, see

González-Rivera et al. (2004).
Quantile loss values are subsequently averaged over the forecasting horizons, the
model with the lower averaged QL value is preferred.
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Quantitative risk management applications
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Kernel density estimated on the ratio between the average quantile loss of the Score–Driven and
GARCH GHSKT models. Left figure reports results for the α = 1% VaR confidence level, right
figure reports results for α = 5%. Values lower than one indicate outperformance of the
predictions based on the Score–Driven volatility filter versus the GARCH alternative. The vertical
bar at one indicates equal performance between the two specifications.
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Conditional Mean Prediction

In Catania et al. (2018b) we study the predictability of cryptocurrencies time series

We compare several alternative univariate and multivariate models in point and
density forecasting of four of the most capitalized series: Bitcoin, Litecoin, Ripple
and Ethereum

We apply a set of crypto-predictors and rely on Dynamic Model Averaging to
combine a large set of univariate Dynamic Linear Models and several multivariate
Vector Autoregressive models with different forms of time variation

We find statistical significant improvements in point forecasting when using
combinations of univariate models and in density forecasting when relying on
selection of multivariate models.
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The forecast design
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Figure: The plots show the four crypto–currencies daily percentage log returns considered in this
study: Bitcoin (BTC) in panel (a); Litecoin (LTC) in panel (b); Ripple (XRP) in panel (c); and
Ethereum (ETH) in panel (d). The dashed horizontal red line indicates the beginning of the
out-of-sample period on the 6th June, 2016. The full sample spans from 9th August, 2015 to
28th December, 2017 for a total of 873 observations.
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Cryptocurrencies and Crypto–predictors

Data Overview
Abbreviation Full name Transformation
Cryptocurrencies time series
BTC Bitcoin First difference of Log
ETH Ethereum First difference of Log
XRP Ripple First difference of Log
LTC Litecoin First difference of Log
Additional crypto–explicative time series
BTC HL Bitcoin High minus Bitcoin Low Log
ETH HL Ethereum High minus Ethereum Low Log
XRP HL Ripple High minus Ripple Low Log
LTC HL Litecoin High minus Litecoin Low Log
Additional financial and macro time series
CDS 5y Europe credit default swap index 5 years First difference of Log
ES 600 Stoxx Europe 600 - Price Index First difference of Log
GLD Gold Bullion LBM First difference of Log
NK 225 Nikkei 225 Stock Average - Price Index First difference of Log
SP 500 S&P 500 Composite - Price Index First difference of Log
SV Silver Handy & Harman Base Price First difference of Log
BD 1m 1-Month US Treasury Constant Maturity Rate First difference
BD 10y 10-Year US Treasury Constant Maturity Rate First difference
VIX VIX closing price Log
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Univariate models

All univariate models have been estimated using the R package eDMA of Catania and
Nonejad (2018)

Abbreviation Full Description
AR(1) Autoregressive model of order one, benchmark model.
KS Kitchen Sink specification.
KS–noregr Kitchen Sink with no covariates.
DMA DMA across all models and forgetting factor combinations.

See Dangl and Halling (2012).
DMS Dynamic Model Selection (DMS).
DMA–noregr DMA with only the lagged values of the series as covariates.
DMS–noregr DMS with only the lagged values of the series as covariates.

Table: Univariate models considered in the forecasting exercise. The first column is the model’s
abbreviation. The second column provides a brief description of each individual model.
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Univariate forecasting results: MSE

h 1 2 3 4 5 6 7
Bitcoin

AR1 42.49 42.28 41.54 41.62 41.55 41.42 41.12
KS 1.52 12.25 1.84 0.96 1.06 1.06 1.12
KS-noreg 2.07 7.03 1.61 1.02 1.01 1.03 1.01
DMA-noreg 0.96 0.98 0.99 1.00 1.00 0.99 1.00
DMS-noreg 0.97 1.00 0.99 1.03 1.02 1.01 1.02
DMA 0.97 0.97 1.01 1.04 1.02 1.02 1.13
DMS 1.01 1.02 1.06 1.06 1.02 1.05 1.15

Litecoin
AR1 134.27 132.88 133.05 133.43 133.60 133.25 131.71
KS 1.02 1.17 7.64 1.01 1.17 1.11 1.09
KS-noreg 0.96 1.03 1.88 1.00 1.01 1.02 1.00
DMA-noreg 0.99 1.03 1.04 1.02 1.02 1.05 1.05
DMS-noreg 1.01 1.04 1.06 1.04 1.02 1.04 1.04
DMA 0.98 1.03 1.09 1.11 1.03 1.06 1.15
DMS 1.00 1.07 1.11 1.11 1.04 1.09 1.22

Table: Mean squared error (MSE), computed over the forecast horizon. Results are reported
relative to the benchmark specification (AR1) for which the absolute score is reported. Models’
description is reported in Table 1.
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Univariate forecasting results: MSE

h 1 2 3 4 5 6 7
Ripple

AR1 224.02 221.31 222.02 221.13 218.93 219.62 219.45
KS 1.11 1.24 1.27 1.10 1.76 1.21 2.01
KS-noreg 1.03 1.04 1.02 1.01 1.08 1.00 1.02
DMA-noreg 0.99 1.03 1.03 1.05 1.06 1.00 1.05
DMS-noreg 1.02 1.03 1.04 1.07 1.08 1.03 1.08
DMA 1.20 1.03 1.22 1.25 1.10 1.18 1.17
DMS 1.27 1.05 1.22 1.26 1.11 1.21 1.21

Ethereum
AR1 180.57 174.99 175.61 175.56 175.79 175.90 174.08
KS 1.05 12.72 1.09 1.01 1.02 1.67 1.09
KS-noreg 1.01 3.40 1.02 1.00 1.00 1.01 1.00
DMA-noreg 0.96 1.00 0.98 0.97 0.98 0.98 1.00
DMS-noreg 0.98 1.01 1.01 0.99 0.99 1.00 1.01
DMA 0.97 1.01 1.03 1.01 1.04 1.04 1.04
DMS 1.02 1.04 1.08 1.05 1.05 1.09 1.04

Table: Values in bold, indicate rejection of the null hypothesis of Equal Predictive Ability
between each model and the benchmark according to the Diebold–Mariano test at the 5%
confidence level. Gray cells indicate those models that belong to the Superior Set of Models
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Multivariate models

Constant parameter VARs: We have four-variate VARs with three lags selected
using BIC. We apply two version of them: a frequentist VAR estimated using OLS
and a Bayesian VAR (BVAR) as in Koop and Korobilis (2013).

Time–varying parameter specifications: Time-varying parameter vector
autoregression model (TVP-VAR) as described in Koop and Korobilis (2013).

The evidence is striking and results are almost opposite to the univariate case in
terms of forecast metrics: no model provides economic gains when point forecasting
cryptocurrencies; several models provide large gains when density forecasting.

Focusing on MSE: simpler constant-parameter VAR and BVAR specifications are
very imprecise at short horizons with losses up to 20%, but they perform more
similar to the AR(1) at longer horizons with mild improvements for BVAR.

Focusing on predictive log score: Time–varying parameter specifications provide
statistically superior forecasts relative to the benchmark at almost all horizons.
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