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Introduction Econometric Methdology Factor Graphs and Message Passing Empirics

Motivation

• In light of availability of high-dimensional data, machine
learning (ML) methods are becoming popular in
econometrics

• Athey and Imbens (2017, JEP) and Mullainathan and
Spiess (2017, JEP) highlight the use of such methods in
treatment effects, panel data etc.

• Main message: while “traditional” econometrics is all about
consistency, the ML revolution is mainly about prediction

• Recent work by Athey, Imbens, Chernozukhov etc on
proving that such methods can be used for causality and
policy evaluation

• Little work has been done in time-series, even though there
is recent interest in large VARs and regressions with many
predictors
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What I do in this paper

Contribution:

1. Introduce to the econometrics literature machine learning
methodologies for designing efficient Bayesian algorithms

2. Introduce a novel interpretation and treatment of the
time-varying parameter regression as a high-dimensional
shrinkage problem.
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First contribution

1 Introduce to the econometrics literature machine learning
methodologies for designing efficient Bayesian algorithms

• This paper works with the general class of graphical
models, estimated using an approximate inference
algorithm

• First developed by David Donoho (Stanford), and
subsequently Sundeep Rangan (NYU), Generalised
Approximate Message Passsing (GAMP) has been very
successful in signal processing

• But little is known about the usefulness of such algorithms
in statistics and even less in economics

• Recent attempt by Mike Wand (2017, JASA) to introduce
message passing inference in statistics
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Second contribution

2 Introduce a novel interpretation and treatment of the
time-varying parameter regression as a high-dimensional
shrinkage problem.

• At least since the works of Cooley/Prescott, Sims/Sargent
etc in the early 70s, time-varying parameter (TVP) models
are now the standard

• In one of his last papers Granger (2008) was speculating
that TVP models will be the future of time-series modeling

• With few recent exceptions (e.g. works by Kapetanios
/Giraitis) TVP models rely solely on state-space
representation

• Instead treat the TVP estimation problem as a
high-dimensional static regression using shrinkage priors –
No reliance on Kalman filter
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TVP Regression

Starting point:
yt = xtβt + εt (1)

• yt is the tth observation on the variable of interest,
t = 1, ..., T

• xt is a 1× p vector of predictors (possibly including lags of
yt)

• βt is a p× 1 vector of coefficients

• εt ∼ N
(
0, σ2t

)
with σ2t the time-varying variance parameter.
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Static form of TVP Regression
Equivalent static form

y = Xβ + ε, (2)

• y = [y1, ..., yT ]′ and ε = [ε1, ..., εT ]′ are column vectors
stacking the observations yt and εt respectively

• β = [β′1, ..., β
′
T ]′ is a Tp× 1 vector

• X is the T × Tp matrix

X =


x1 01×p ... 01×p 01×p

01×p x2 ... 01×p 01×p
...

. . .
. . .

. . .
...

01×p 01×p ... xT−1 01×p
01×p 01×p ... 01×p xT

 , (3)
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Static form of TVP Regression

Equivalent static form

y = Xβ + ε, (4)

• Gram matrix X′X has only rank T → OLS has no unique
solution

• Typical approach is to define an AR/RW model for βt

• For a Bayesian, such model can be thought of as a
hierarchical prior of the form p (βt|βt−1) ∼ N (βt−1, Q)

• Such prior is very informative, and leads to some shrinkage

• However, equation (24) can be estimated using better
hierarchical shrinkage priors (LASSO, spike and slab etc)
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Sparse Bayesian Learning prior

Static regression form

y = Xβ + ε, (5)

I follow Tipping (2001, JMLR) and use “Sparse Bayesian
Learning” prior for each element βi of the vector β,
i = 1, 2, ..., Tp,

p (βi|αi) = N
(
0, α−1i

)
, (6)

p (αi) = Gamma (a, b) . (7)

♣ This conditionally Normal prior for βi is a scale mixtures of
Normal representation of a Student-t prior.
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Dealing with stochastic volatility 1

• In this static form, β is huge and will be estimated
efficiently with message passing

• Of interest is to find out how to estimate σ2 =
(
σ21, ..., σ

2
T

)′
Define Σ a T × T diagonal matrix with element σ2t , and write

y = Xβ + Σv, (8)

Conditional on knowing β

log
[
(y − Xβ)2

]
= log

(
diag (Σ)2

)
+ log(v2),⇒ (9)

ỹ = σ̃2 + ṽ, (10)

♣ If ṽ was Normal, then problem above is that estimation of a
Normal mean (σ̃2)
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Dealing with stochastic volatility 2

• ṽ is log−χ2 and not Normal

• Follow Kim, Shephard, Chib (1998) and approximate using
mixture of 7 Normals, with means µi, variances Vi, weights
πi
• Estimate

ỹ = σ̃2 + ui, for i = 1, ..., 7, (11)

where ui ∼ N (µi, Vi)

An estimator of the T × 1 vector of log-volatilities is of the form
Ei
(
σ̃2
)

= ỹ − µi, and the final volatility estimate at time t is

σ̂2t = exp

(
7∑
i=1

πi (ỹt − µi)

)
/7. (12)
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Introduction to Factor Graphs

Some definitions

• Graphical model: probabilistic structure that relies on
graph theory in order to express conditional dependence
between random variables

• Factor graph: Bipartite graph that represents the way a
global distribution of several random variables is
decomposed into a product of simpler functions (“factors”).

• Message passing: Dynamic programming solutions,
where a node collects a result from a part of the graph and
communicates it to the next neighboring node via a
message.

• Sum-product algorithm: A rule specifying the way each
node collects all messages in order to calculate the marginal
distribution of that message.
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A toy example

• Consider discrete random variables x = (x1, x2, x3)

• And a joint mass function p that we can decompose, say, as

p (x1, x2, x3) = fa (x1) fb (x1, x2) fc (x2, x3) fd (x3) , (13)

where fa, fb, fc, fd are the factors that have a certain
functional known to us analytically

• Factor graph for this example:
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Marginal distribution of xi
Marginal distribution of a generic xi is

p (xi) =
∑
x\xi

p (x) . (14)

which can be computationally cumbersome in high-dimensions
and for continuous x

♣ Idea is to calculate the marginal distribution using message
passing algorithms

• Denote as µxi→fj the message sent from variable xi to
function fj

• µfj→xi the message sent from factor node fj to variable
node xi
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Message passing inference

1. Message sent from xi to fj : product of all messages
arriving to node xi except from the message coming from
the target node fj :

µxi→fj =
∏

k∈N(xi),k 6=j

µfk→xi , (15)

2. Message from node fj to node xi: sum over the product of
the factor function fj itself and all the incoming messages,
except the messages from the target variable node xi:

µfj→xi =
∑
x\xi

fj (x)
∏

l∈N(xi),l 6=i

µxl→fj , (16)

3. If xi is a leaf variable node, µxi→fj = 1

4. If fj is a leaf factor, µfj→xi = fj (xi)

Marginal distribution of xi: p (xi) ∝
∏
m∈N(xi)

µfm→xi .
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Example calculation of p (x2) in toy example
• Messages emitted to node x2 from left are

µfa→x1 = fa (x1) , (17)

µx1→fb = µfa→x1 = fa (x1) , (18)

µfb→x2 =
∑
x1

fb (x1x2)µx1→fb , (19)

• Messages emitted to node x2 from right are

µfd,x3 = fd (x3) , (20)

µx3→fc = µfc→x3 = fd (x3) , (21)

µfc→x2 =
∑
x3

fc (x2, x3)µx3→fc , (22)

The marginal distribution of x2 is

p (x2) ∝ µfb→x2 × µfc→x2 . (23)
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Regression representation using factor graphs
• Let’s go back to our regression problem, in its static form

this was
y = Xβ + ε, (24)

• For simplicity assume σ2t = σ, fixed and known
• Focus on q × 1 vector of random variables β. The exact

marginal posterior for βi, i = 1, ..., q is of the form

p (βi|y) =

∫
p (β|y) dβj 6=i, (25)

∝
∫
p (y|β) p (β) dβj 6=i, (26)

= p (βi)

∫
p (y|β)

q∏
j=1,j 6=i

p (βj) dβj 6=i, (27)
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Factor graph representation of Bayesian regression
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Factor graph representation of Bayesian regression
• Redefine the marginal posterior of βi as the product of

incoming messages at node βi in the graph

p (βi|y) = µp(βi)→βi

T∏
t=1

µp(yt|β)→βi . (28)

• Message µp(βi)→βi is leaf factor node, hence equal to p (βi).
• Following the sum-product message rule we can write

µp(yt|β)→βi =

∫
p (yt|β)

p∏
j=1,j 6=i

µβj→p(yt|β)dβj 6=i. (29)

• Message from node βj to function p (yt|β) is the product of
all incoming messages to node βi, excluding p (yt|β)

µβj→p(yt|β) = p (βj)

T∏
s=1,s 6=t

µp(ys|β)→βj . (30)
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Factor graph representation of Bayesian regression

• If I haven’t “lost” you so far, bottom line of all this is that
if I iterate through the following

µ
(r+1)
p(yt|β)→βi =

∫
p (yt|β)

q∏
j=1,j 6=i

µ
(r)
βj→p(yt|β)dβj 6=i, (31)

µ
(r+1)
βj→p(yt|β) = p (βj)

T∏
s=1,s6=t

µ
(r)
p(ys|β)→βj , (32)

after a few iterations I should be able to get the marginal
posterior of βi using equation (28)

♣ Given the “factors” p(y|β) and p(β), can I derive analytically
the functional forms implied by the messages, e.g. µβj→p(yt|β)?

Korobilis (2018) Generalized Approximate Message Passing 20/ 30



Introduction Econometric Methdology Factor Graphs and Message Passing Empirics

GAMP
♣ Given the “factors” p(y|β) and p(β), can I derive analytically the functional forms

implied by the messages, e.g. µβj→p(yt|β)?

• Answer is “no”

• This is where Generalized Approximate Message Passing
(GAMP) comes to play

• You can think of the iterative sum-product rule as the
equivalent to the “Kalman filter (KF)” for state-space
models, i.e. a generic solution under certain regularity
conditions

• But GAMP can be thought of as one of many algorithmic
implementations of the KF when the parameter matrices
are not known (e.g. MCMC-KF, ML-KF, EM-KF etc).

Korobilis (2018) Generalized Approximate Message Passing 21/ 30



Introduction Econometric Methdology Factor Graphs and Message Passing Empirics

What does GAMP do?

• Derivation of GAMP is complex so will explain in few
words and refer you to the Appendix of my paper

• GAMP introduces Normal approximations to the messages
µ• defined above

• First, when q →∞ a central limit theorem (CLT)
postulates that the messages

∏q
j=1,j 6=i µβj→p(yt|β) are

Gaussian with respect to the uniform norm

• Second, take Taylor series expansion of messages such that
mean and variance of p(βi|y) can be approximated up to
omission of O (1/q) terms

• Both approximations vanish as q →∞: “Blessing of
Big Data”, rather than curse of dimensionality
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What does GAMP look like?

1: Initialize β̂
(0)
j = 0 and τ̂

β,(0)
j = 100 ∀j = 1, ..., q, and set ŝ

(0)
t = 0 ∀t = 1, ..., T .

2: r=1
3: while ‖β̂(r) − β̂(r−1)‖ → 0 do

4: 1) Output Messages Step:

5: for t = 1 to T do

6: ĉ
(r)
t =

∑q
j=1 Xt,j β̂

(r−1)
j − ŝ(r−1)

t ∗ τ̂c,(r)t

7: τ̂
c,(r)
t =

∑q
j=1 X2

t,j τ̂
β,(r−1)
j

8: ŝ
(r)
t = gout

(
ĉ
(r)
t , τ̂

c,(r)
t , yt

)
9: τ̂

s,(r)
t = − ∂

∂ĉ
gout

(
ĉ
(r)
t , τ̂

c,(r)
t , yt

)
10: end for
11: 2) Input Messages Step:

12: for j = 1 to q do

13: d̂
(r)
j = β̂

(r−1)
j + τ̂

d,(r)
j

∑T
t=1 Xt,j ŝ

(r)
t

14: τ̂
d,(r)
j =

(∑T
t=1 X2

t,j τ̂
s,(r)
t

)−1

15: β̂
(r)
j = gin

(
d̂
(r)
j , τ̂

d,(r)
j

)
16: τ̂

β,(r)
j = τ̂

d,(r)
j

∂
∂d̂
gin

(
d̂
(r)
j , τ̂

d,(r)
j

)
17: end for
18: r = r + 1
19: end while

20: Obtain mean and variance of β as β̂ =
(
β̂
(r)
1 , ..., β̂

(r)
q

)
and τβ =

(
τ̂
β,(r)
1 , ..., τ̂

β,(r)
q

)
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Why is GAMP efficient?

• The algorithm iterates through computationally trivial
scalar multiplications and additions
• Worst case complexity of only O(Tq)
• At its core are the scalar functions gin and gout
• Exact form of these two functions depends on the form of

the prior distribution and the likelihood
• Regardless of the form of the nonlinear scalar functions gin

and gout, the worst-case complexity of the GAMP
algorithm is always O(Tq)
• Final product are µ̂β,j and τ̂β,j , posterior mean and

variance of βj , respectively
• Prior hyperparameters can be updated using EM updates

within each GAMP iteration
• Conditional on µ̂β,j and τ̂β,j , stochastic volatility is

updated using the simple estimator presented previously
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Summary of what I have presented so far

1. Interested in time-varying parameter regression

2. View time-varying parameter estimation problem as a
high-dimensional regression and tackle it using Bayesian
shrinkage

3. View stochastic volatility estimation problem as equivalent
problem of estimating an unknown (static) mean

4. Use a highly efficient message passing algorithm for
inference and develop it to work with the specific shrinkage
prior and stochastic volatility estimator

• Next I am presenting empirical results, but I won’t surprise you
(typical macro forecasting exercise using various TVP models)

• GAMP-TVP model has Tq ≈ 700× 40 ≈ 30, 000 predictors

• In practice could have gone with non-macro application that has
millions of predictors (but I like macro!)
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Forecasting US inflation

• The methodology is used to forecast inflation with
time-varying parameters and predictors

• It is now established that for forecasting US inflation, both
stochastic volatility and regression coefficients are needed

• Very popular: Stock and Watson (2007, JMCB), TV
intercept, no predictors

• Large recent literature on algorithms for efficient
estimation of high-dimensional TVP models for inflation

• Kalli and Griffin (2014, JoE), Koop and Korobilis (2012,
IER), Groen et al (2012, JBES), Chan et al (2013, JBES),
Nakajima and West (2013, JBES), Giordani and Kohn
(2008, JBES) among others

→ All methodologies use quarterly data, and few predictors
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Data

• No surprise on the data front: FRED-MD dataset

• Forecasting total CPI, PCE deflator (results same for other
measures)

• Monthly data from 1959M1 to 2016M6, total of 115 series

• Forecasting model follows Stock and Watson (1999, JME):

πt+h − πt = φt,0 + ftθt(L) + ∆πtγt(L) + et+h, (33)

where et ∼ N(0, σ2t ) and ft are factors

• Specification implies inflation is I(1)

• Forecasts for h = 1, 3, 6, 12 months ahead

• Forecasts evaluated at last 50% of the sample, MSFEs and
APLs relative (ratio and spread, respectively) to AR(2)
model.
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Competing models
• KP-AR: Koop and Potter (2007) structural breaks AR(p)

model;
• GK-AR: Giordani and Kohn (2008) structural breaks

AR(p) model;
• TVP-AR: Pettenuzzo and Timmermann (2017)

time-varying parameter AR(p) model;
• UCSV: Stock and Watson (2007) unobserved components

stochastic volatility;
• TVD: Chan et al. (2012) time-varying dimension

regression
• TVS: Kalli and Griffin (2014) time-varying sparsity

regression
• BMA: George and McCulloch (1993) stochastic search

variable selection regresison
• TVP-BMA: Groen et al. (2012) time-varying Bayesian

model averaging model
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Point forecast evaluation

Table: Forecast performance (MSFEs)

CPI
h = 1 h = 3 h = 6 h = 12

KP-AR 0.970 0.879 0.849∗∗∗ 0.834∗∗∗

GK-AR 0.999 1.008 1.009 1.005
TVP-AR 0.949 0.867∗∗∗ 0.828∗∗∗ 0.837∗∗∗

UCSV 1.027 0.970 0.911∗∗ 0.916∗

TVD 0.957 0.867∗∗∗ 0.862∗∗∗ 0.850∗∗∗

TVS 1.175 0.960 0.963 1.005
BMA 0.982∗ 0.588∗∗∗ 0.542∗∗∗ 0.531∗∗∗

TVP-BMA 1.090 0.770∗∗∗ 0.772∗∗ 0.629∗∗

TVP-GAMP 0.923∗∗ 0.461∗∗∗ 0.421∗∗∗ 0.413∗∗∗

PCE deflator
h = 1 h = 3 h = 6 h = 12

KP-AR 1.018 0.845∗∗∗ 0.806∗∗∗ 0.783∗∗∗

GK-AR 0.999 0.996 1.005 0.999
TVP-AR 1.010 0.793∗∗∗ 0.720∗∗∗ 0.732∗∗∗

UCSV 1.064 0.841∗∗∗ 0.810∗∗∗ 0.761∗∗∗

TVD 1.015 0.787∗∗∗ 0.744∗∗∗ 0.742∗∗∗

TVS 1.041 0.857∗∗∗ 0.817∗∗∗ 0.814∗∗∗

BMA 1.014 0.713∗∗∗ 0.663∗∗∗ 0.654∗∗∗

TVP-BMA 1.158 0.842∗∗ 0.798∗ 0.812
TVP-GAMP 0.982 0.614∗∗∗ 0.584∗∗∗ 0.565∗∗∗
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Density forecast evaluation

Table: Forecast performance (APLs)

CPI
h = 1 h = 3 h = 6 h = 12

KP-AR 0.060 0.135 -0.006 0.023
GK-AR -0.027 0.033 0.025 -0.027
TVP-AR 0.216 0.095 0.045 0.071
UCSV 0.184 0.031 0.033 -0.002
TVD -8.107 -2.665 -1.862 -1.859
TVS 0.032 0.154 0.100 0.058
BMA 0.019 0.303 0.279 0.292
TVP-BMA 0.149 0.394 0.379 0.358
GAMP 0.017 0.528 0.422 0.381

PCE deflator
h = 1 h = 3 h = 6 h = 12

KP-AR -0.033 0.071 0.044 0.016
GK-AR -0.066 0.000 0.009 0.009
TVP-AR 0.068 0.157 0.116 0.118
UCSV 0.051 0.065 0.062 0.081
TVD -9.103 -2.887 -1.784 -1.559
TVS 0.004 0.149 0.167 0.103
BMA -0.035 0.203 0.211 0.203
TVP-BMA 0.024 0.277 0.323 0.290
GAMP 0.046 0.258 0.279 0.266
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