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A Test for State-Dependent Predictive Ability based on a Markov-Switching Framework

Introduction

Macroeconomic Forecasting

Empirical fact: predictability is unstable over time.

I Many individual indicators exhibit predictive content for output growth and

inflation but only sporadically

I Stock and Watson (2003), Rossi and Sekhposyan (2010), Rossi (2013), and

Granziera and Sekhposyan (2017), among others

New (but related) empirical fact: predictability varies across states.

I Inflation rate: Dotsey et al. (2015), Gibbs and Vasnev (2017)

I Output growth: Chauvet and Potter (2013)

I Stock returns: Rapach et al. (2010), Henkel et al.(2011), Dangl et al.(2012)

I Bond excess returns: Gargano et al. (2014)

I Commodity prices: Gargano and Timmermann (2014)
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A Test for State-Dependent Predictive Ability based on a Markov-Switching Framework

Introduction

This Paper

Current approach: use exogenously provided shift dates.

I NBER recession dates for the US economy

This paper: A test for comparing the out-of-sample forecasting performance of

two competing models with state-dependent predictive content.

Main features:

I econometrician not required to observe when underlying states shift

I forecast loss differences modeled using Markov-switching process

I test equal and constant predictive ability vs. state-dependent ability

I heteroskedasticity and autocorrelation consistent (HAC) test
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A Test for State-Dependent Predictive Ability based on a Markov-Switching Framework

Introduction

Main Results

Available tests (Diebold-Mariano, Giacomini-White, Giacomini-Rossi, etc.):

I can have low power when predictability varies across economic states

I even when they reject, can lead to incorrect inference

Proposed test:

I performs well with unequal but constant performance

I exhibits more power when predictability varies across states

I estimates when underlying states shift

I HAC estimators work well
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A Test for State-Dependent Predictive Ability based on a Markov-Switching Framework

State-Dependent Predictive Ability

Environment

Environment

Objective: compare sequences of h-step ahead out-of-sample forecasts for yt
obtained from two competing models.

Set up (Giacomini and White, 2006):

I sample of size T , in-sample portion R, out-of-sample portion P

I out-of-sample forecast loss differences

∆Lt(δ̂t−h,R, γ̂t−h,R) = L
(1)(yt, δ̂t−h,R) − L

(2)(yt, γ̂t−h,R)

I parameters estimated using rolling scheme

Null hypothesis of equal predictive ability (Diebold and Mariano, 1995):

H
(1)
0 : E

[
∆Lt(δ̂t−h,R, γ̂t−h,R)

]
= 0 for all t = R+ h, . . . , T
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State-Dependent Predictive Ability

Environment

Unconditional Predictive Ability

Giacomini and White (2006): test of equal (unconditional) predictive ability.

Test based on the sample average of loss differences:

GW = σ̂−1
P P

1/2∆LP

with ∆LP = P−1
∑T
t=R+h ∆Lt(δ̂t−h,R, γ̂t−h,R), and σ̂2

P the sample variance or a

HAC estimator of the long-run variance of ∆Lt(δ̂t−h,R, γ̂t−h,R).

Results:

I treat loss differences {∆Lt(δ̂t−h,R, γ̂t−h,R)}
T
t=R+h as observed data

I under the null hypothesis, GW
d→ N(0, 1) as P →∞

I can be applied to nested and non-nested models
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State-Dependent Predictive Ability

Environment

Unstable Environments

Giacomini and Rossi (2010): tests of the joint hypothesis of equal and constant

performance of two models against local predictive ability.

Fluctuation test based on a rolling average of loss differences:

Fluctt,m = σ̂−1
P m

−1/2

t+m/2+1∑
j=t−m/2

∆Lj(δ̂j−h,R, γ̂j−h,R)

for t = R+ h+m/2, . . . , T −m/2 + 1, m the window size, and σ̂2
P a HAC

estimator of the long-run variance of ∆Lt(δ̂t−h,R, γ̂t−h,R).

Results:

I test rejects when maxt |Fluctt,m| > kα

I other tests: Giacomini and Rossi (2010) and Martins and Perron (2016)

8 / 28



A Test for State-Dependent Predictive Ability based on a Markov-Switching Framework

State-Dependent Predictive Ability

State-dependent loss differences

State-Dependent Loss Differences

Model out-of-sample forecast loss differences using Markov-switching mean plus

noise regression:

∆Lt(δ̂t−h,R, γ̂t−h,R) = µst + σstut

where st (= 0, 1) is an unobserved two-state first-order Markov process with

transition probabilities

Prob(st = j | st−1 = i) = pij i, j = 1, 2

and ut is an unobservable moving-average (MA) process with zero mean and

non-zero autocorrelations up to lag h− 1. Next, estimate

θ = (µ0,µ1,σ0,σ1,p00,p11)
′ by quasi maximum likelihood (Q-ML) following

Hamilton (1989), Hamilton (1990), or Kim and Nelson (1999).
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State-Dependent Predictive Ability

Asymptotic predictive ability tests

Predictive Ability Tests

Giacomini and White (2006): treat loss differences as observed data.

Standard asymptotic normality arguments:
√
P
(
θ̂− θ0

) d→ N
(
0,Ω

)
as P →∞.

Null hypothesis of equal and constant predictive ability: µ0 = µ1 = 0.

Use Wald test statistic for linear hypotheses of the form R0θ = 0:

Wald = P
(
R0θ̂

) ′(
R0Ω̂R

′
0

)−1(
R0θ̂

)
where R0 a r× 6 matrix, r the number of restrictions, and Ω̂ a consistent

estimator of Ω.

Under the null hypothesis, Wald
d→ χ2(r) as P →∞.
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State-Dependent Predictive Ability

Asymptotic predictive ability tests

Estimators of Ω

Hessian estimator:

Ω̂H = −

[
1

P

T∑
t=R+h

Ht(θ̂)

]−1

where
∑T
t=R+hHt(θ̂) usually obtained numerically as in Hamilton (1989).

Outer-product estimator:

Ω̂OP =

[
1

P

T∑
t=R+h

gt(θ̂)gt(θ̂)
′

]−1

where gt(θ) is the score vector for observation t as in Hamilton (1996).

But HAC estimator of the covariance matrix is required:

1. multi-step forecasts (Diebold and Mariano, 1995)

2. instabilities (Morley and Rabah, 2014; Martins and Perron, 2016)
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State-Dependent Predictive Ability

Asymptotic predictive ability tests

Estimators of Ω

An alternative estimator, the ‘sandwich’ estimator:

Ω̂S =

[
1

P

T∑
t=R+h

Ht(θ̂)

]−1

Σ̂(θ̂)

[
1

P

T∑
t=R+h

Ht(θ̂)

]−1

where Σ is the long-run variance of the score vector (Hayashi, 2000).

A HAC estimate of Σ using the kernel-based estimator:

Σ̂(θ̂) =

q−1∑
j=−(q−1)

k(j/q)P−1
T∑

t=R+h

gt(θ̂)gt−j(θ̂)
′

where k(·) a kernel weight function, q a bandwidth that grows with P.

For serially uncorrelated scores (q = 1), is the same estimator suggested in

Hamilton (1996) to calculate robust standard errors.
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A Test for State-Dependent Predictive Ability based on a Markov-Switching Framework

Monte Carlo Evidence

Appendix - HAC estimators and asymptotic confidence intervals

HAC Estimators

Sequences of loss differences ∆Lt generated assuming:

I µ0 = −2, µ1 = 2, σ2
0 = σ2

1 = 1, and p00 = p11 = 0.8

The error term is the serially correlated MA(1) process:

ut = (1 + θ2)−1/2(1 + θL)εt

I εt ∼ i.i.d.N(0, 1)

Set up:

I T = 50, 100, 250 and θ = 0, 0.5, 0.9

I Q-ML estimates obtained using EM algorithm (Hamilton, 1990)
I covariance matrix of θ̂ estimated using:

I Hessian (H) and outer-product (OP) estimators
I ‘sandwich’ estimator using Bartlett (NW), Parzen (PK), and quadratic

spectral (QS) kernels
13 / 28
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Monte Carlo Evidence

Appendix - HAC estimators and asymptotic confidence intervals

Appendix: Small sample properties of ML estimates of µ0

θ Bias SD H OP NW PK QS

T = 100 0 0.006 0.159 0.154 0.156 0.163 0.162 0.163

0.933 0.938 0.946 0.942 0.945

0.5 0.015 0.220 0.161 0.156 0.202 0.210 0.210

0.846 0.838 0.896 0.909 0.910

0.9 0.010 0.233 0.163 0.157 0.211 0.219 0.220

0.824 0.817 0.904 0.908 0.913

T = 250 0.9 -0.001 0.135 0.102 0.098 0.129 0.134 0.134

0.874 0.856 0.932 0.942 0.943

Notes: The true model is ∆Lt(δ̂t−h,R, γ̂t−h,R) = µst+σstut with st = 0, 1,

µ0 = −2, µ1 = 2, σ2
0 = σ2

1 = 1, and p00 = p11 = 0.8. The error term is an

MA(1) process ut = (1 + θ2)−1/2(1 + θL)εt where εt ∼ i.i.d.N(0, 1). The

covariance matrix estimators are: Hessian (H), outer-product (OP), Bartlett

(NW), Parzen (PK), and quadratic spectral kernel (QS). Bias is the average

value of (µ̂i0 −µ0). SD is the square root of the average value of (µ̂i0 −µ0)
2.
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Monte Carlo Evidence

Appendix - HAC estimators and asymptotic confidence intervals

Appendix: Small sample properties of ML estimates of µ0
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Notes: The true model is ∆Lt(δ̂t−h,R, γ̂t−h,R) = µst+σstut with st = 0, 1,

µ0 = −2, µ1 = 2, σ2
0 = σ2

1 = 1, and p00 = p11 = 0.8. The error term is an
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A Test for State-Dependent Predictive Ability based on a Markov-Switching Framework

Monte Carlo Evidence

Size and power properties

Set-up 1: Unequal but Constant Performance

Data generating process:

yt = βxt + σεεt

xt = φxt−1 + σννt

I εt and νt are i.i.d.N(0, 1), φ = .5, σε = σν = 1

The time-t one-step ahead forecasts of yt+1:

f̂1
t,R = 0

f̂2
t,R = β̂t,Rxt+1

I β̂t,R the in-sample estimate of β, xt+1 known at time t

I same DGP as Giacomini and White (2006) and Martins and Perron (2016)
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Monte Carlo Evidence

Size and power properties

Set-ups 2 & 3: Different Performance in Different States

Data generating process:

yt = −βst + σεεt

xt = δst + σννt

I εt and νt are i.i.d.N(0, 1), δ = 1, σε = σν = 0.5

The time-t one-step ahead forecasts of yt+1:

f̂1
t,R = 0

f̂2
t,R = γ̂t,Rxt+1

I γ̂t,R the in-sample rolling estimate of γ, xt+1 known at time t

I Set-up 2: Prob(st = j | st−1 = i) = pij for i, j = 0, 1

I Set-up 3: st = actual NBER recession dates 1960Q1–2015Q4 (T = 224)

16 / 28



A Test for State-Dependent Predictive Ability based on a Markov-Switching Framework

Monte Carlo Evidence

Size and power properties

Size and Power

β = 0: the competing forecasting models are equally accurate in the population,

then the smaller model would be preferable in the finite sample.

To have forecasting models equally accurate in the finite sample:

E

[(
yt+1 − f̂

1
t,R

)2
]
= E

[(
yt+1 − f̂

2
t,R

)2
]

Size:

I Set-up 1: β0 ≈ 1/
√
R4/3

I Set-ups 2 & 3: β0 ≈
√
δ2
[
1 − σ2

ν

R(δ2p1+σ2
ν)

]−1
σ2
ε

R(δ2p1+σ2
ν)

Power:

I β = β0 + β+ with β+ = 0, .1, . . . , 2
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A Test for State-Dependent Predictive Ability based on a Markov-Switching Framework

Monte Carlo Evidence

Size and power properties

Table 2: Empirical size under quadratic loss

R P GW Fluct SD-W GW Fluct SD-W

Set-up 1 Set-up 2

50 50 0.044 0.043 0.084 0.053 0.056 0.093

100 0.055 0.048 0.044 0.057 0.040 0.045

250 0.031 0.037 0.034 0.076 0.044 0.055

100 50 0.059 0.043 0.103 0.047 0.053 0.097

100 0.038 0.045 0.053 0.067 0.062 0.049

250 0.038 0.051 0.030 0.064 0.030 0.046

DGP-3

50 174 0.104 0.053 0.056

100 124 0.081 0.061 0.051

150 74 0.058 0.065 0.062

Notes: The Fluctt,m test constructed using a window size of .3P. Nom-

inal size 0.05.
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A Test for State-Dependent Predictive Ability based on a Markov-Switching Framework

Monte Carlo Evidence

Size and power properties

Figure 2: Unequal but constant performance

β
+

 

 
Rolling Estimation

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GW

Fluct

SD−W

β
+

 

 
Recursive Estimation

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GW

Fluct

SD−W

I empirical power (rejection frequencies) of the GW, Fluctt,m (m = .3P), and

SD-Wald tests with R = P = 100

19 / 28



A Test for State-Dependent Predictive Ability based on a Markov-Switching Framework

Monte Carlo Evidence

Size and power properties

Figure 3: Different performance in different states (1)
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Monte Carlo Evidence

Size and power properties

Figure 4: Different performance in different states (2)
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Monte Carlo Evidence

Size and power properties

Figure 5: Different performance in different states (3)
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A Test for State-Dependent Predictive Ability based on a Markov-Switching Framework

Empirical Example: Forecasting Output

Forecasting Output

Chauvet and Potter (2013): most output growth forecasting models exhibit a

similar performance during economic expansions but one model performs

significantly better during recessions.

Two competing forecasting models for real GDP growth:

1. Benchmark model: f̂1
t,R = AR(2)

2. 1 + DF-MS model: f̂2
t,R = AR(2) + DF + prob of recession

Other details:

I one-step ahead out-of-sample forecasts

I parameters estimated using rolling window

I forecast comparisons using real-time data
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Empirical Example: Forecasting Output

Figure 6: Real GDP growth and forecasts
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Empirical Example: Forecasting Output

Table 3: Loss difference statistics for GDP growth

OOS OOS0 OOS1

Observations 96 82 14

Average 1.032 -0.159 8.005

Standard Dev. 6.388 3.019 13.422

AR(1) 0.279∗∗ -0.136 0.121

GW 1.582 -0.477 2.232∗∗

GW(HAC) 1.360

Fluctuation(HAC,m = .1P) 3.517∗∗

Fluctuation(HAC,m = .3P) 2.232

SD-Wald(HAC) 16.484∗∗

Notes: Significance of the AR(1) coefficients is tested based on the asymptotic

result
√
Tρ̂1

d→ N(0, 1). The 5% (10%) critical value is 1.96 (1.645) for a two-
sided GW test, 3.012 (2.766) for a two-sided Fluctuation test with a rolling window
size of m = .3P, and 3.393 (3.170) for m = .1P. The 5% (10%) critical value for
a SD-Wald test is 5.99 (4.61). ∗∗ (∗) denotes rejection of the null hypothesis at
the 5% (10%) level.
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A Test for State-Dependent Predictive Ability based on a Markov-Switching Framework

Empirical Example: Forecasting Output

Figure 7: Test statistics and probabilities of st = 1
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A Test for State-Dependent Predictive Ability based on a Markov-Switching Framework

Empirical Example: Forecasting Output

Forecasting Output

The parameter estimates (s.e. in parentheses) of the test equation are:

I µ̂0 = 24.72 (6.10), σ̂2
0 = 129.13 (57.90), p̂00 = 0.48 (0.25)

I µ̂1 = −0.06 (0.42), σ̂2
1 = 9.37 (1.70), p̂11 = 0.98 (0.02)

The results suggest:

I a regime in which the AR-DF model is more accurate (µ̂0 > 0)

I a regime in which the two models exhibit a similar performance (µ̂1 ≈ 0)

I a substantial difference in variance across regimes with σ̂2
0/σ̂

2
1 ≈ 13.78
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Conclusion

Conclusion

I Tests of equal predictive ability based on averages (unconditional or rolling)

are inadequate when the predictive content is constrained to just a few

observations (see also Casini, 2018)

I I proposed a new test for comparing the out-of-sample forecasting

performance of two models for situations in which the predictive content

may be state-dependent and of short duration

I The results could be used to improve the overall accuracy of macroeconomic
forecasts:

I Chauvet and Potter (2013), Kotchoni and Stevanovic (2018)
I Gibbs and Vasnev (2017)
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