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F1(θ1) ; F2(θ2)
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Literature Review

• Two-step procedures

• The optimal pooling: DeGroot and Mortera (1991), Stock and Watson (2004),

Marcellino (2004), Wallis (2005), Genre et al. (2013); Kascha and Ravazzolo

(2010), Gneiting et al. (2013).

• Bayesian Model Averaging: Raftery et al. (1997), Raftery et al. (2005)Geweke

and Whiteman (2006), Rossi and Sekhposyan (2014).

• One-step procedures

• Finite mixture Models: LeSage and Magura (1992), Waggoner and Zha (2012),

Billio et al. (2013), Del Negro et al. (2016), Mandel et al. (2016).

• Infinite mixture models: Maheu and Yang (2016), Bassetti et al. (2018)

3



Motivation

Why a comparison between combination approaches?

• Are they the same?

• Which one is the most accurate?

• When one is more accurate than the other.
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Motivation

Why a comparison between combination approaches?

• Are they the same? No

• Which one is the most accurate? It depends

• When one is more accurate than the other. Model specification, sample size,

number of individual model, ect...

Endow the DM with a tool to elicit not only the combination model but the

family they belong to
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In this paper

This paper proposes a comparison between

• Geweke and Amisano (2011) as two-step approach

• a simplified version of Waggoner and Zha (2012) as one-step approach

The comparison has carried out through:

Simulated data:

1. Baseline

2. Single-break

3. (Multiple-break)

Macroeconomic applications:

1. Small Dataset

2. Medium-Large Dataset
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Two-step and One-step

procedures



Two-step Procedure: the Optimal Pooling

1. A set of predictive distributions fk for a vector of time series yt
fk = p(yt+1|yo

t ,θk) Estimate θk through OLS.

2. are taken as given and combined according to:

g(yt) =
K∑

k=1

ηkp(yt ; y
o
t−1, fk)

where:
∑K

k=1 ηk = 1, ηk ≥ 0, for (k = 1, . . . ,K ).

Optimal weights η∗k
are obtained by minimising the Kullback-Leiber Information Criterion (KLIC):

η∗k = argmax
η

1

T

T∑
t=1

ln g(yt)

Following Hall and Mitchell (2007) and Conflitti et al. (2015) details
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One-step Procedure: Finite Mixture of Distributions Model

A standard Finite Mixture Distribution is used as limiting case of the Markov

Switching Model (Waggoner and Zha, 2012):

p(yt |y0
t−1,θk) =

K∑
k=1

p(yt |y0
t−1,St = k ,θk)Pr(St = k|y0

t−1,θk)

p(yt |y0
t−1,θk) =

K∑
k=1

p(yt |y0
t−1,θk)ηk

The weights are distributed according to

ηk ∼ M

(
1,

[
p1fN(yt ;µ1,t , σ

2
1)∑K

k=1 pk fN(yt ;µk,t , σ2
k)
, . . . ,

pK fN(yt ;µK ,t , σ
2
K )∑K

k=1 pk fN(yt ;µk,t , σ2
k)

])

where pk = (p1, ..., pK ), 0 ≤ pk ≤ 1 and
∑K

k=1 pk = 1.

Bayesian estimation with Gibbs sampling algorithm following Frühwirth-Schnatter

(2006) details

11



One-step Procedure: Finite Mixture of Distributions Model

A standard Finite Mixture Distribution is used as limiting case of the Markov

Switching Model (Waggoner and Zha, 2012):

p(yt |y0
t−1,θk) =

K∑
k=1

p(yt |y0
t−1,St = k ,θk)Pr(St = k|y0

t−1,θk)

p(yt |y0
t−1,θk) =

K∑
k=1

p(yt |y0
t−1,θk)ηk

The weights are distributed according to

ηk ∼ M

(
1,

[
p1fN(yt ;µ1,t , σ

2
1)∑K

k=1 pk fN(yt ;µk,t , σ2
k)
, . . . ,

pK fN(yt ;µK ,t , σ
2
K )∑K

k=1 pk fN(yt ;µk,t , σ2
k)

])

where pk = (p1, ..., pK ), 0 ≤ pk ≤ 1 and
∑K

k=1 pk = 1.

Bayesian estimation with Gibbs sampling algorithm following Frühwirth-Schnatter
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Evaluation of Density Forecasts

• Logarithmic Scoring Rule: LS(g(Yt),A) = log (giYt |Ai )

• Continuous Ranked Probability Scores:

CRPS =

∫ +∞

−∞
(g(Yt+1)− Yt+1)2dy

TW-CRPS =

∫ +∞

−∞
(g(z)− 1{Yt+1 ≤ z})2w(z)dz

• Probability Integral Transforms (PITs): the density forecast is called

“calibrated” if zt is uniform:

zt =

∫ Yt

−∞
fk(Yt)d(Yt)
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Comparison with simulated data



No-break

Accuracy Loss: (CRPScomb − CRPSDGP)/CRPSDGP

• Data Generating Process (sample sizes T = {50, 200, 1000})

yt = 0.5 + 0.8yt−1 + εt εt
iid∼ (0, σ2

ε)

• Predictive distributions fk can be:

Nonnested case Nested case

f1 : yT+h ∼ N
(
θ̂0 + θ̂1yT+h−1, σ̂

2
ε1

)
f1 : yT+h ∼ N

(
θ̂0 + θ̂1yT+h−1, σ̂

2
ε1

)
f2 : yT+h ∼ N

(
β̂0 + β̂1xT+h−1, σ̂

2
ε2

)
f2 : yT+h ∼ N

(
θ̂0 + θ̂1yT+h−1+

β̂1xT+h−1, σ̂
2
ε2

)

T=50 T=200 T=1000
0

0.5

1

1.5

2
2-step

1-step

T=50 T=200 T=1000
0

2

4

6
2-step

1-step
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Single-Break Scenario: DGP Setups

• Data Generating Process

yt = ΦXt + εt εt
iid∼ (0, σ2

ε)

Xt =

 1

yt−1

xt−1

 Φ =

 [φ0 = 0.5 φ1 = 0.8 φ2 = 0] , if t < Tb

[φ0 + d0 φ1 + d1 φ2 + d2] , if Tb ≤ t ≤ T .

T = {50, 200, 1000} and Tb = {0.25, 0.50, 0.75, 0.95} of T .

• Predictive distributions fk can be:

Nonnested case:

f1 : yT+h ∼ N
(
θ̂0 + θ̂1yT+h−1, σ̂

2
ε1

)
f2 : yT+h ∼ N

(
β̂0 + β̂1xT+h−1, σ̂

2
ε2

)
Nested case:

f1 : yT+h ∼ N
(
θ̂0 + θ̂1yT+h−1, σ̂

2
ε1

)
f2 : yT+h ∼ N

(
θ̂0 + θ̂1yT+h−1 + β̂1xT+h−1, σ̂

2
ε2

)
f1 and f2 are combined treating the break as unknown
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Single-break scenario: Types of break

exp. # d0 d1 d2 σ2
ε Comments

1 0 0 0 0.6 no breaks

2 -0.4 0 0 0.6 small break in the intercept

3 -0.6 0 0 0.6 large break in the intercept

4 0 -0.2 0 0.6 small break in AR(1) dynamics

5 0 -0.4 0 0.6 large break in AR(1) dynamics

6 0 0 0.5 0.6 Small break in exo. var. coefficient

7 0 0 1 0.6 Large break in exo. var. coefficient

8 0 -0.2 0.5 0.6 Breaks in AR(1) and exo. var. coefficients

9 0 0 0 2 Increase in post-break variance

10 0 0 0 0.3 Decrease in post-break variance
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Single-break Nonnested case

Accuracy Loss: (CRPScomb − CRPSDGP)/CRPSDGP
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Single-break Nonnested case

Accuracy Loss: (CRPScomb − CRPSDGP)/CRPSDGP

17
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Single-break Nested case

Accuracy Loss: (CRPScomb − CRPSDGP)/CRPSDGP
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Single-break Nested case

Accuracy Loss: (CRPScomb − CRPSDGP)/CRPSDGP

Multiple Breaks

19
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Empirical Applications



Forecasting GDP with industrial Production Index and

Employment rate

Forecasting Real Output growth rate for US based on

• Industrial Production Index and Non-farm payroll employment

• In-sample forecast

• from 1964:Q1 to 2018:Q1

• One-step ahead rolling-window forecasts

• Using two datasets:

1. Ex-post revised data (FRED database)

2. Real-time data (Philadelphia Fed database)
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Forecasting GDP with industrial Production Index and

Employment rate

• Two predictive regressions:

• y IP
t+1 = α̂1,t +

∑p
i=0 β̂i,ty

o
t−i +

∑Q
j=0 δ̂j,t IPt−j + ε1,t and

• yEMP
t+1 = α̂2,t +

∑p
i=0 β̂i,ty

o
t−i +

∑N
n=0 γ̂n,tEMPt−n + ε2,t

where εk,t ∼ N(0, σ2
k,t).

• Forecasts combined according to

pc(yt+1|yo
t ,θk,t) =

K=2∑
k=1

η̂k,tp(yt+1|yo
t ,θk,t)

Where Φk,t = {αk,t , δj,t , βi,t , γn,t , σ
2
k,t , ηk,t} are estimated according to the

one-step and two-step procedures

One-step and Two-step procedures compared with respect to:

• a benchmark AR(1) model

• both density and point forecasts
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Macroeconomic Application - Results

Ex-Post Revised data

AR(1) 2-step 1-step

Log Score -0.9818 -1.1765 -0.9134

(0.000) (0.000)

(0.000)

CRPS 0.2289 0.4879 0.1331

(0.000) (0.000)

(0.000)

TW-CRPS 0.2289 0.4880 0.1330

(0.000) (0.000)

(0.000)

MSPE 0.2209 0.2215 0.2220

(0.8236) (0.3923)

(0.8236)

Real-Time data

AR(1) 2-step 1-step

Log Score -0.9298 -0.9974 -0.9126

(0.000) (0.000)

(0.000)

CRPS 0.1008 0.2916 0.0756

(0.000) (0.000)

(0.000)

TW-CRPS 0.1008 0.2916 0.0760

(0.000) (0.000)

(0.000)

MSPE 0.3629 0.3573 0.3914

(0.3964) (0.0362)

(0.0521)
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Forecasting US GDP and Inflation in a Large Macroeconomic

Dataset

Forecasting Real Output growth and Inflation rate for US based on

• Replicate Rossi and Sekhposyan (2014)

• Subsample of Stock and Watson (2003) dataset details

• In-sample forecast

• from 1984:Q1 to 2010:Q3

• One-step ahead rolling-window forecasts of 40 observations
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Forecasting US GDP and Inflation in a Large Macroeconomic

Dataset

• K=32 forecasting models:

yt+1,k = β0 + β1(L)Xt,k + β2,k(L)yt + εt+1,k

where εk,t ∼ N(0, σ2
k,t), βi (L) =

∑P
p=0 βiL

i

• Forecasts combined according to

p(yt+1|yo
t ,θk,t) =

K∑
k=1

ηkp(yt+1,k |yo
t ,θk,t)

Where Φk,t = {βi,t , σ2
k,t , ηk,t} are estimated according to the one-step and

two-step procedures algorithm

One-step and Two-step procedures compared with respect to:

• a benchmark AR(1) model

• BMA pooling model as in Rossi and Sekhposyan (2014)
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Large Macroeconomic Dataset Application - Results

AR(1) 2-stepCM 2-stepBMA 1-step

LogScore -0.9258 -0.9376 -0.9247 -0.9300

(0) (0.3003) (0)

(0) (0.0008)

(0)

CRPS 0.2312 0.2406 0.2310 0.2374

(0) (0.6521) (0)

(0.0006) (0.0966)

(0)

TW-CRPS 0.2313 0.2408 0.2311 0.2372

(0) (0.6239) (0)

(0.0006) (0.0737)

(0)

AR(1) 2-step CM 2-step BMA 1-step

Log Score -0.9220 -0.9278 -0.9212 -1.1458

(0.0062 ) (0.0008) (0 )

(0.0025) (0)

(0 )
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(0.0118) (0.9014) (0)

(0.0113) (0)

(0)
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(0.0103) (0)

(0)
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Conclusions

To elicit the combination approaches, the DM has to account for:

• Individual models specification:

• Nested in favour of one-step approach

• Nonnested in favour of two-step approach

• Number of models to combine:

• Two-step is not affected by the number of individual models

• Carefully accounting for large dataset estimating the one-step approach.
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Appendix



Conflitti et al. (2015)

Φ(ω∗j ) =
1

T

T∑
t=1

ln g(Yt) (1)

where ˆωOPT maximises Φ(ω∗j ) subject to the constraints ωj ≥ 0 and
∑m

j=1 ωj = 1.

Let us define the T × J matrix Ĝ composed by nonnegative elements Ĝtj = ĝt(Yt).

Then equation 1 can be rewritten as:

Φ(ω∗j ) =
1

T

T∑
t=1

ln (Ĝωj). (2)

Let as introduce the following Lagrange multiplier λ to take into account the

constraints of the weights:

Φ(ω∗j ) =
1

T

T∑
t=1

ln (Ĝωj)− λ
m∑
j=1

ωj . (3)



Following Conflitti et al. (2015), we introduce a “surrogate” cost function depending

on a vector of arbitrary weights aj , such that:

Ψλ(ωj , aj) =
1

T

T∑
t=1

m∑
j=1

Ĝjtaj∑m
j=1 Ĝjtaj

ln

(
ωj

aj

m∑
j=1

Ĝjtaj

)
− λ

m∑
j=1

ωj . (4)

Let us define the following algorithm for k numbers of iterations:

ωk+1
j,λ = argmax

ω
Ψλ(ωj , ω

k
j,λ) (5)

Rewriting last equation in terms of ωk
j , the iterative algorithm becomes:

ωk+1
j = ωk

j

1

T

T∑
t=1

Ĝjt∑m
j=1 Ĝjtωk

j

. (6)

The nonnegative constrain is satisfied imposing positive weights that sum to one as

initial values (i.e. ω0
j = 1/m). The iterates are expected to converge to the

maximiser ˆωOPT due to the monotonicity of the cost function in (4) and the

constraints. The algorithm has also a stop criterion based on negligible difference

between two successive iterates. back



Description of Data Series

Label Trans Period Name Description Source

Asset Prices

rovnght@us level 59:M1-10:M9 FEDFUNDS Int. Rate: Fed Funds (Effective) F

rtbill@us level 59:M1-10:M9 TB3MS Int. Rate: 3-Mn Tr. Bill, Sec Mkt Rate F

rbnds@us level 59:M1-10:M9 GS1 Int. Rate: US Tr. Const. Mat., 1-Yr F

rbndm@us level 59:M1-10:M9 GS5 Int. Rate: US Tr. Const. Mat., 5-Yr F

rbndl@us level 59:M1-10:M9 GS10 Int. Rate: US Tr. Const. Mat., 10-Yr F

stockp@us ∆ln 59:M1-10:M9 SP500 US Share Prices: S&P 500 F

exrate@us ∆ln 73:M1-10:M9 111 NEER I

Real Activity

rgdp@us ∆ln 59:Q1-10:Q3 GDPC12 Real GDP, sa F

ip@us ∆ln 59:M1-10:M9 INDPRO Industrial Production Index, sa F

capu@us level 59:M1-10:M9 CUMFNS Capacity Utilization Rate: Man., sa F

emp@ ∆ln 59:M1-10:M9 CE16OV Civilian Employment: thsnds,sa F

unemp@us level 59:M1-10:M9 UNRATE Civilian Unemployment,sa F

Wages and Prices

pgdp@us ∆ln 59:Q1-10:Q3 GDPDEF GDP Deflator, sa F

cpi@us ∆ln 59:M1-10:M9 CPIAUCSL CPI: Urban, All items, sa F

ppi@us ∆ln 59:M1-10:M9 PPIACO Producer Price Index, nsa F

earn@us ∆ln 59:M1-10:M9 AHEMAN Hourly Earnings: Man., nsa F

Money

mon0@us ∆ln 59:M1-10:M9 AMBSL Monetary Base, sa I

mon1@us ∆ln 59:M1-10:M9 M1SL Money: M1, sa I

mon2@us ∆ln 59:M1-10:M9 M2SL Money: M2, sa I

mon3@us ∆ln 59:M1-06:M2 M3SL Money: M3, sa I

back



One-step procedure - Bayesian Inference

Bayesian inference technique of MCMC estimation using data augmentation and

Gibbs sampling.

Posterior Distributions are:

• Combination Weights ηk : p(ηk |S) ∼ D(e1(S), . . . , eK (S))

• Autoregressive parameters φk : p(φk |σ2
k , y

o
t ,S) ∼ N (ak ,Ak)

where Ak = (A−1
0 + 1

σ2
k
z ′kzk)−1 ; ak = Ak(A−1

0 a0 + 1
σ2
k
z ′kyk)

• Variances σ2
k : p(σk |θk , yo

t ,Sm−1) ∼ G−1(ck ,Ck)

where ck = c0 + Nk

2 , Ck = C0 + 1
2ε
′
kεk and εk = yo

t − Zkφk .

A common choice of prior takes the form:

p(θk) = D(e0, e0|S)
2∏

k=1

N (φk |a0,A0)G−1(σ2
k |c0,C0).



One-step procedure - Bayesian Inference

Dealing with Label Switching

p(yt |θk , ηk) =
K∑

k=1

ηk fN(yt |θk) =
K∑

k=1

ηρ(k)fN(yt |θρ(k))

where ρ is an arbitrary permutation of {1, . . . ,K}.

back .



3. Multi-break Scenario

yt = ΦXt + εt εt
iid∼ (0, σ2

ε)

Xt =

 1

yt−1

xt−1

 Φ =


[φ0 = 0.5 φ1 = 0.8 φ2 = 0] , if t < Tb

[φ0 + d0 φ1 + d1 φ2 + d2] , if Tb ≤ t ≤ Tc

[φ0 + d∗0 φ1 + d∗1 φ2 + d∗2 ] , if Tc ≤ t ≤ T

(7)

T = {50, 200, 1000}, Tb = 0.25, Tc = 0.75 of T .

exp # d0 d1 d2 d∗0 d∗1 d∗2 σ2
ε Comments

11 -0.2 0 0 0 0 0 0.6 mean reversion in intercept

12 -0.2 0 0 -0.4 0 0 0.6 decreasing trend in the intercept

13 0 -0.2 0 0 0 0 0.6 mean reversion in AR dynamics

14 0 -0.2 0 0 -0.4 0 0.6 decreasing trend in AR dynamics

15 0 0.2 0 0 0.4 0 0.6 increasing trend in AR dynamics

16 0 0 1 0 0 0 0.6 mean reversion in predictor coefficient

17 0 0 1 0 0 2 0.6 trending break in predictor coefficient

18 0 0 0 0 0 0 2 increase in post-break variance

19 0 0 0 0 0 0 0.3 decrease in post-break variance



2. Combination

• Individual Models

Nonnested case: Nested case:

f1 : yT+h ∼ N
(
θ̂0 + θ̂1yT+h−1, σ̂

2
ε1

)
f1 : yT+h ∼ N

(
θ̂0 + θ̂1yT+h−1, σ̂

2
ε1

)
f2 : yT+h ∼ N

(
β̂0 + β̂1xT+h−1, σ̂

2
ε2

)
f2 : yT+h ∼ N

(
θ̂0 + θ̂1yT+h−1 + β̂1xT+h−1, σ̂

2
ε2

)
f3 : yT+h ∼ N

(
β̂0 + β̂1xT+h−1, σ̂

2
ε3

)
f3 : yT+h ∼ N

(
θ̂0 + θ̂1yT+h−1 + β̂1xT+h−1, σ̂

2
ε3

)
• θ̂0, β̂0, θ̂1, β̂1, σ̂

2
ε1
, σ̂2
ε2

are estimated by Two-step and One-step approach,

• f1 and f2 are combined treating the break as unknown.

back



3. Multi-break Results

Nonnested Case Nested case
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Algorithm for large dataset Application

Start from some initial values of S0 and repeat the following steps M times after a

burn-in period long M0.

1. parameter simulation conditional on the allocation Sm−1 (as in algorithm (1)):

1.1 Sample ηk from the conditional Dirichlet posterior p(ηk |S) as in algorithm (1);

1.2 Sample each regression coefficient φ = (φ1,0, φ1,1, φ2,0, φ2,1, φ2,2) jointly from the

posterior distribution p(φ|σ2
k , y

o
t ,Sm−1) ∼ N (ak ,Ak) as in algorithm (1);

1.3 Sample the random hyperparameter C0 from p(C0|Sm−1, xiφk , σ
2
k , y

o
t ∼ G(gN ,GN);

1.4 Sample each variance σ2
k from the posterior distribution σk |φ, y o

t ,Sm−1 ∼ G−1(ck ,Ck)

Where ck = c0 + Nk
2

and Ck = C0 + 1
2
ε′kε

2. Classification of each observation yt conditional on θk : sample each element of Si of

Sm from the conditional posterior p(St |φ, σ2
ε,k , y

o
t ) given by:

Pr(Si = k |φ, σ2
k , y

o
t ) ∝ ηk fN(yo

t ; xiφk , σ
2
k)

The posterior density estimated from the MCMC draws is:

p(yt+1|yo
t ,θk) =

1

M + M0

M∑
m=1

( K∑
k=1

ηmk p(yt+1|θmk,t+1)

)
back



Preliminary Conclusions

1. Combination of two AR models suggests the superiority of one-step procedure

with sufficiently large sample size;

2. In presence of breaks:

2.1 The specification of individual models matters

• Nonnested case: Two-step is more accurate;

• Nested case: One-step is more accurate;

2.2 The type of break matters:

• One-step performs better when the break regards exogenous variables.

2.3 The sample size matters:

• In the nonnested case, two-step becomes more accurate than one-step

• In the nested case, one-step becomes more accurate than two-step

2.4 No clear information from the timing of the break.
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