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Overview

We address short-term (one-month ahead) density forecasting of
exchange rate returns

We develop dynamic Bayesian methodology accounting for
various sources of parameter and model uncertainty

We work with a large number of di¤erently speci�ed VARs

Dynamic model learning (DML) to switch between di¤erent
VAR con�gurations in a data-based fashion

Empirical application to forecasting exchange rates of G10
countries with a focus on economic evaluation criteria in a
dynamic asset allocation exercise
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Features of the Modelling Framework

Multivariate setup

Exogenous variables

Minnesota-type prior with rich shrinkage patterns

Time-varying coe¢ cients

Fast model switching motivated by "scapegoat" theory
(Bacchetta & van Wincoop, 2004, AER)

Decisions about speci�cation choices (i.e. di¤erent predictors,
di¤erent VARs, di¤erent degrees of model switching) are all
made automatically in a time-varying fashion
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Data

Endogenous data: Monthly exchange rate returns of G10 countries
vis-à-vis the US Dollar

Australian dollar (AUD), Canadian dollar (CAD), Deutsche
mark/euro (EUR), Japanese yen (JPY), New Zealand dollar
(NZD), Norwegian krone NOK), Swedish krona (SEK), Swiss
franc (SWF), British pound (GBP)

Long sample from 1973 : 01 to 2016 : 12 (without exogenous
regressors)

Short sample from 1986 : 01 to 2016 : 12 (with exogenous
regressors)
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Data

Two types of exogenous regressors: "asset-speci�c" and "non
asset-speci�c"

"Asset-speci�c" exogenous data: country-speci�c information

Uncovered Interest parity (UIP)
Percentage change in aggregate stock prices over the last 12 months
(STOCK_GROWTH)
Di¤erence between long term and short term interest rates
(INT_DIFF)

"Non-asset-speci�c" exogenous data:

Oil price changes (OIL)

We stationarize the data
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(TVP)-VAR-(X) Model

State space representation

yt = xtβt + εt , εt � N (0,Σt)
βt = βt�1 + ut , ut � N (0,Ωt)

yt is an M � 1 vector
xt is an M � k matrix de�ned so that each TVP-VAR equation
contains an intercept, p = 6 lags of each of the M variables, Nx
"asset-speci�c" variables and Nxx "non asset-speci�c" variables

k = M � (1+ pM)| {z }
standard VAR

+ M2 �Nx| {z }
asset-speci�c exog.variables

+ M �Nxx .| {z }
non-asset-speci�c exog.variables
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Kalman Filtering and Discount Factors

Discount factors

Ωt jt�1 =
1
λ

Ωt�1jt�1 λ = 1 (for main results)

Σt jt�1 � IW (δnt�1,St�1) δ = 0.97

The predictive density is multivariate t:

yt jy t�1 � tδnt�1
�byt jt�1,FtΩt jt�1F

0
t +Qt jt�1
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Σt jt�1

�
=
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δnt�1 +M � 1

p
�
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�
=
ZZ
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p
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Minnesota-type Prior

Prior distribution
β0 � N (0M ,Ω0)

The Minnesota prior assumes Ω0 to be diagonal. Let Ω0,i denote the block of Ω0
associated with the coe¢ cients in equation i and Ω0,i ,jj its diagonal elements

Ω0,i ,jj =

8>>>>>>>>><>>>>>>>>>:

s2i γ1 γ1 2 f0; 10g for INTERCEPT
γ2
r 2 γ2 2 f0; 0.1; 0.5; 0.9g for OWN LAGS in the VAR, r = 1, ..., 6
γ3s

2
i

r 2s2j
γ3 2 f0; 0.1; 0.5; 0.9g for CROSS LAGS in the VAR, r = 1, ..., 6

γ4s
2
i γ4 2 f0; 1g for variable UIP

γ5s
2
i γ5 2 f0; 1g for variable STOCK_GROWTH

γ6s
2
i γ6 2 f0; 1g for variable INT_DIFF

γ7s
2
i γ7 2 f0; 1g for variable OIL
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Dynamic Model Learning

We have J = 32 individual model con�gurations for the long sample
and J = 512 for the short sample
In each period, we choose the predictive densities which would have
maximized the discounted joint predictive likelihood until this
point in time:

Evaluation criterion: Discounted joint predictive likelihood

DPLt jt�1,j =
t�1
∏
i=1

h
pj
�
yt�i jy t�i�1

�iαi

We choose α 2 f0.20; 0.40; 0.50; 0.60; 0.70; 0.80; 0.90; 0.95; 0.99; 1g
in each period adaptively from the data
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International FX Investment Strategy

Consider a US investor who builds a portfolio by allocating her
wealth between 10 bonds: one domestic (US), and the nine
foreign bonds

The foreign bonds yield a riskless return in local currency
and a risky return in US dollars
The expectation of the total return at time t � 1 is equal to

Expected total return
Et�1 (rt) = it�1 + ∆st jt�1

Two steps for the investor in each period: select the
currently best model and adjust portfolio weights
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Portfolio Optimization Problem

Mean-Variance Optimization

max
wt

�
µp,t jt�1 = w

0
tµt jt�1 + (1� w 0t ι)rf � τ

����wt � wt�1 � 1+ rt
1+ rp,t

�����
subject to�

σ�p
�2
= w 0t

δnt�1
δnt�1 � 2

�
xt�1Ωt jt�1x

0
t�1 +Qt jt�1

�
| {z }
estimate of the conditional covariance matrix

wt

σ�p = 10% (annualized)

τ = 0.0008
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Economic Evaluation of Forecasting Performance

Modi�ed version of quadratic utility
We measure how much a mean-variance investor is willing to pay
for conditioning on a particular VAR con�guration with
dynamic learning (*) instead of basing portfolio decisions upon
the simple random walk (RW) model

Calculation of ΦTC

T�1
∑
t=0

��
R �,TCp,t+1 �ΦTC

�
� θ

2 (1+ θ)

�
RTC ,�p,t+1 �ΦTC

�
2
�

| {z }
Average utility of �exible model

=
T�1
∑
t=0

�
RRW ,TC
p,t+1 � θ

2 (1+ θ)

�
RRW ,TC
p,t+1

�2�
| {z }

Average utility of RW model

RTC ,�p,t+1 is the gross portfolio return of the �exible model

Relative risk aversion: θ = 2
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Fast Model Switching
Long Sample
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grey line:
α 2 f0.20; 0.40; 0.50; 0.60; 0.70; 0.80; 0.90; 0.95; 0.99; 1g
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Dynamic Sparsity
Long Sample
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Dynamic Sparsity
Short Sample
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Correlation Forecasts and 90% Credibility Intervals
Long Sample
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Results: Long Sample
Evaluation period:1990-2016

ΦTC SR SRTC PLL

Flexible VAR 485�� 1.08�� 0.92�� 22.05
Type of restrictions: VAR lags
Flexible VAR without own lags (γ2 = 0) 365� 0.82� 0.72� 21.86
Flexible VAR without cross lags (γ3 = 0) 278 0.80 0.66 21.78
Type of restrictions: Random walk
Random walk (without drift) with time-varying (co-)variance 17 0.47 0.46 21.65
Type of restrictions: Model selection dynamics
α = 1 �255 0.35 0.19 21.65
α = 0.99 �194 0.40 0.24 21.65
α = 0.95 60 0.59 0.45 21.68
α = 0.90 238 0.78 0.65 21.88
α = 0.80 485�� 1.08�� 0.92�� 22.05
α = 0.70 478� 1.07�� 0.90� 22.06
α = 0.60 486� 1.12�� 0.93�� 22.06
α = 0.50 409� 1.04�� 0.84�� 22.05
α = 0.40 276 0.93� 0.70 22.03
α = 0.20 181 0.85 0.60 21.98
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Results: Short Sample
Evaluation period:1996-2016

ΦTC SR SRTC PLL

Flexible VAR 327 1.01� 0.82� 22.02�

With Regressors
Flexible VAR with OIL 199 0.89 0.70 22.03�

Flexible VAR with UIP 464� 1.12�� 0.93�� 22.01�

Flexible VAR with INT_DIFF 388� 1.06� 0.88� 22.02�

Flexible VAR with STOCK_GROWTH 368� 1.06� 0.88� 22.06�

Flexible VAR with ALL REGRESSORS 397� 1.02� 0.87� 22.04�

Type of restrictions: VAR lags
Flexible VAR without own lags (γ2 = 0) 98 0.72 0.60 21.97
Flexible VAR without cross lags (γ3 = 0) 200 0.86 0.79 21.78��

Type of restrictions: Random walk
RW without drift and time-varying (co-)variance 5 0.54 0.53 21.72�

Type of restrictions: Model selection dynamics
α = 1 �427 0.34 0.11 21.69
α = 0.99 �464 0.28 0.08 21.66
α = 0.95 �167 0.51 0.34 21.79�

α = 0.90 98 0.77 0.60 21.96�

α = 0.80 266 0.94 0.76 22.02�

α = 0.70 327 1.01� 0.82� 22.02�

α = 0.60 251 0.97 0.75 22.02�

α = 0.50 84 0.82 0.60 21.98
α = 0.40 �31 0.71 0.48 21.96
α = 0.20 11 0.75 0.52 21.94
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Statistics of the Portfolio Returns and Evolution of
Wealth

Long Sample Short Sample
Mean return annualized (in %) 13.92 12.48
Volatility annualized (in %) 10.36 10.25
Skewness 0.07 �0.23
Kurtosis 3.37 3.16
Positive returns (>0 in %) 64 65
First-order autocorrelation of returns 0.08 0.10
First-order autocorrelation of squared returns �0.03 �0.04
Correlation to S&P 500 returns �0.04 �0.01
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Summary

New multivariate approach to exchange rate forecasting with
large utility gains for an FX investor

Main conceptual advantages:

Approach nests many simpler models as special cases
Flexible shrinkage prior
Transparency
Computational feasibility

Main empirical �ndings:

Sparsity
Fast model switching
Important for prediction: VAR lags and UIP
Findings align with implications of the theoretical and empirical
literature
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Koop Korobilis (2013) Minnesota-Prior

Ω0,i ,jj =

�
a � s2i a = 100 for INTERCEPTS
γ
r 2 γ 2

�
10�5; 0.001; 0.005; 0.01; 0.05; 0.1

	
for r = 1, ..., 6

.

Single shrinkage parameter γ

All variables are treated as engonenous

This results in large VARs (+27 additional variables in short
sample)
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Results for Koop Korobilis (2013) Minnesota-Prior
Short Sample

ΦTC SR SRTC PLL

DML with ALL VARIABLES �130 0.42 0.36 21.84
Type of restrictions: Model selection dynamics
DML (α = 1) �201 0.33 0.30 21.63
DML (α = 0.99) �201 0.33 0.30 21.63
DML (α = 0.95) �253 0.32 0.26 21.69
DML (α = 0.90) �287 0.29 0.23 21.79
DML (α = 0.80) �210 0.35 0.30 21.84
DML (α = 0.70) �116 0.43 0.38 21.86
DML (α = 0.60) �94 0.45 0.40 21.86
DML (α = 0.50) �21 0.51 0.45 21.87
DML (α = 0.40) �14 0.53 0.47 21.86
DML (α = 0.20) �21 0.53 0.46 21.84
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Results for Koop Korobilis (2013) Minnesota-Prior
Long Sample

ΦTC SR SRTC PLL

DML with ALL VARIABLES �70 0.50 0.36 21.88
Type of restrictions: Model selection dynamics
DML (α = 1) �123 0.45 0.30 21.74
DML (α = 0.99) �19 0.57 0.44 21.73
DML (α = 0.95) 43 0.61 0.45 21.83
DML (α = 0.90) 25 0.58 0.44 21.91
DML (α = 0.80) 36 0.60 0.46 21.93
DML (α = 0.70) �44 0.53 0.39 21.93
DML (α = 0.60) �20 0.56 0.41 21.95
DML (α = 0.50) 115 0.68 0.55 21.95
DML (α = 0.40) 70 0.65 0.49 21.94
DML (α = 0.20) �69 0.53 0.36 21.90
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"Dense" Prior

Ω0,i ,jj =

8>>>>>>>>><>>>>>>>>>:

γ1s
2
i γ1 2 f0; 10g for INTERCEPTS

γ2
r 2 γ2 2 f0.0001; 0.001; 0.1g for OWN LAGS
γ3s

2
i

r 2s2j
γ3 2 f0.0001; 0.001; 0.1g for CROSS LAGS

γ4s
2
i γ4 2 f0.0001; 0.001; 0.1g for variable UIP

γ5s
2
i γ5 2 f0.0001; 0.001; 0.1g for variable STOCK_GROWTH

γ6s
2
i γ6 2 f0.0001; 0.001; 0.1g for variable INT_DIFF

γ7s
2
i γ7 2 f0.0001; 0.001; 0.1g for variable OIL
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Results for "Dense" Prior
Long Sample

ΦTC SR SRTC PLL

DML with ALL POTENTIAL REGRESSORS 343 0.98 0.75 22.01
Type of restrictions: Model selection dynamics
DML (α = 1) �141 0.69 0.29 21.78
DML (α = 0.99) �230 0.45 0.21 21.70
DML (α = 0.95) 379� 1.00� 0.79� 21.77
DML (α = 0.90) 409� 0.97 0.80 21.90
DML (α = 0.80) 337 0.92 0.73 21.94
DML (α = 0.70) 497� 1.08 0.88 22.03
DML (α = 0.60) 343 0.98 0.75 22.01
DML (α = 0.50) 245 0.89 0.65 21.99
DML (α = 0.40) 214 0.87 0.63 21.98
DML (α = 0.20) 131 0.79 0.54 21.95
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Results for "Dense" Prior
Short Sample

ΦTC SR SRTC PLL
DML with ALL REGRESSORS 206 0.96 0.72 22.04�

Type of restrictions: Model selection dynamics
DML (α = 1) �321 0.29 0.21 21.71�

DML (α = 0.99) �163 0.53 0.34 21.72�

DML (α = 0.95) �10 0.65 0.47 21.85�

DML (α = 0.90) 83 0.74 0.57 21.95�

DML (α = 0.80) 189 0.92 0.71 22.00�

DML (α = 0.70) 278 1.03 0.81 22.05�

DML (α = 0.60) 243 1.01 0.78 22.05�

DML (α = 0.50) 231 0.96 0.74 22.03�

DML (α = 0.40) 206 0.96 0.72 22.04�

DML (α = 0.20) 61 0.83 0.57 21.97�
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Fama Regression/UIP

The UIP condition postulates that the di¤erence in interest rates
between two countries should equal the expected change in exchange
rates between the countries�currencies (Engel 2013):

UIP

Et∆st+1 = intt � int�t ,

where ∆st+1 � st+1 � st . Et∆st+1 denotes the expected change (at
time t for t + 1) of log exchange rates, denominated as US dollar per
foreign currency. intt (int�t ) is the one-period nominal interest rate
US (foreign) securities. We use z1,t = intt � int�t as a predictor.
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Predictive Likelihoods
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Exponential downweighting of past forecasting performance:
Example for α = 0.95: forecast performance three years ago
receives � 15% as much weight as the forecast performance last
period
Example for α = 0.90: forecast performance three years ago
receives � 2% as much weight as the forecast performance last
period
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Interval Forecasts
Long Sample
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