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1. Objective. 

 

Develop weighted-covariance factor decomposition (WCFD) as a method similar 

to principal components decomposition (PCD) for reducing a larger estimated 

VARMA “data” model of many variables to a smaller VARMA “factor” model of 

fewer “primary” variables of interest. 

 

The factor model is based on structural disturbances of the data model that 

account for a desired percentage of variations of the primary variables. 

 

WCFD is applied to U.S. time-series data on quarterly GDP and 10 monthly 

leading indicators from the Conference Board: 

 

(i) A monthly VAR(1) data model of quarterly GDP and 10 monthly indicators is 

estimated using MLE and a missing-data Kalman filter (MDKF) to handle the 

mixed-frequency data (MFD) (Zadrozny, 1988, 1990a,b); 

 

(ii) WCFD is applied to reduce the estimated VAR(1) data model to a monthly 

univariate ARMA(2,1) factor model of GDP as the one primary variable; 
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(iii) The MDKF is applied to the derived UARMA(2,1) factor model and out-of-

sample data to forecast GDP at monthly intervals. 

 

(iv) The factor-model-based GDP forecasts are only overall slightly more 

accurate than those of the antecedent VARMA data model. 

 

PCD has been applied to time-series data on a large number of variables to 

produce a few significant factors which are, then, used as observed variables 

to produce forecasting models of primary variables, e.g., statically by 

Stock-Watson (JASA & JBES, 2002) and dynamically by Forni-Hallin-Lippi-

Reichlin (REStat, 2000). 

 

Here, we skip the intermediate step of producing factors and go directly from 

data to large model to small model. Previously, apparently only Box-Tiao 

(Biometrika, 1977) did something similar. 
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2. Define and compute WCFD. 

 

(i) Start with a VARMA(p,p) data model of relatively many variables: 

 

yt = A1yt-1 + ... + Apyt-p + ξt + B1ξt-1 + ...  + Bpξt-p, 

 

where yt = n1 vector of relatively many variables and ξt = n1 vector of 

their innovations ~ IID(0,Σξ). 

 

(ii) Consider the data model's transfer function or impulse responses: 

 

yt = A(L)-1B(L)ξt = (L) t  = it0i iξ 

  , 

 

where i  = iji
)p,imin(

1j j BA   , i  1, and 0  = In. 

 

We need i  only for i = 1, ..., h = prespecified finite forecast horizon and 

don't need the full transfer function or stationarity. 
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(iii) Filter nonstationary roots out of ψ(L): 

 

Nonstationary AR characteristic roots, 1, ∙∙∙, , such that |i| ≥ 1, can 

first be filtered out of (L)  as 
~
(L) = (1 - 1L)∙∙∙(1 - L)ψ(L) before 

computing WCFD for filtered 
~
(L). 

 

(iv) If n = no. variables is large: 

 

Estimating a full VARMA or VAR data model may be infeasible. In such cases, 

consider “diagonal” models with iA  and iB  = diagonal, but   = full. 

 

(v) Weights for selecting primary variables: 

 

For ty  = (
T
1ty , 

T
2ty )

T
)  = n1, 1ty  = r1 (r  n) vector of primary variables of 

interest, 2ty  = (n-r)1 vector of secondary variables correlated with and 

informative for forecasting primary variables. Then, 1ty  = W ty , where W = rn 

selection matrix. 
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(vi) Examples of weighting matrices W: 

 

(a) Principal components decomposition: If W = nI  = nn, all variables are 

weighted equally, all are stationary, and forecast horizon h is large, then, 

WCFD corresponds to PCD and all variables are primary (have nonzero weight). 

 

(b) Forecasting a portfolio: If W = ( 1 , ..., n ) = 1n, where i  = 

portfolio allocation weight of an asset ( i  > 0) or a liability ( i  < 0), 

where ity  = value of asset i, then, WCFD decomposes the forecast-error 

variance of the portfolio's value and all variables are primary. 

 

(c) Forecasting one primary variable: If W = (1, 0,..., 0
T
)  = 1n, then, only 

the first variable in ty  is primary and forecast, illustrated below. 

 

(d) Non-PCD equal weighting: W = (1, ..., 1
T
)  = 1n differs from W = nI  by 

including all covariance of all variables in WCFD, illustrated below. 
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(vi) Some potential advantages of WCFD compared to PCD as a method for 

developing a small factor forecasting model. 

 

(a) WCFD gives only primary variables nonzero weight: 

 

 WCFD focuses the decompositon on primary variables but takes account of 

their correlations with secondary variables. 

 PCD weights all variables equally, whether or not they are informative 

for primary variables. 

 

(b) Flexible forecast horizon: 

 

 WCFD allows any finite forecast horizon, h. 

 PCD implicitly sets an infinite forecast horizon, h = . 

 

(c) Nonstationarity: 

 

 WCFD works identically for stationary or nonstationary models. 

 PCD strictly makes sense only for stationary variables. 
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(vii) Other basic components of WCFD: 

 

(a) Decomposition matrix: WCFD computes decomposition matrix R = [ 1r ,..., nr ] 

= nn, where R T
R  =  , R is generally full, exists, is unique under mild 

conditions, and differs from but corresponds to a lower-triangular Cholesky 

factor of  . 

 

(b) Structural disturbances: t  = ( 1t , ..., nt T
)  = 

1
tR

   = n1 ~ IID(0,In). 

 

(c) h-step-ahead forecast errors: ht  = iht
1h
0i iξ 


   = n1, with covariance 

    matrix h  = E
T
hthtηη  = 

T
iξ

1h
0i i 




. 

 

(d) Sum of weighted variances: 

 

    v = tr[
T

hW W ] = tr[ Q ] =  
n

1i iv , where Q = 
h 1 T T

i ii 0
WW




  , and 

 

    iv  = 
T
i ir Qr  = part of v accounted for by ith disturbance it  through ith 

                 column ir  of R. 
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(viii) Define WCFD analogously to PCD: 

 

Compute 1r  that maximizes 1v  = 
T
1 1r Qr , such that R

T
R  =  . Given 1r , compute 

2r  that maximizes 2v  = 
T
2 2r Qr , such that R

T
R  =  . Continue like this. Given 

1r ,..., n 2r  , compute n 1r   that maximizes n 1v   = 
T
n 1 n 1r Qr  , such that R

T
R  = 

 . Given v, 1v , ..., n 1v   and 1r , ..., n 1r  , compute nr  such that R
T

R  =   

and nv  = v - 


1n
1i iv . 

 

(ix) Sufficient conditions for existence of a unique WCFD: 

 

(a) Innovation covariance matrix   of the data model is positive definite, 

 

(b) Weighting matrix W is nonzero, 

 

(c) Q  = 
h 1 T T

i ii 0
WW




   is diagonalizable with respect to its nonzero 

    eigenvalues. 
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(x) Compute WCFD analogously to PCD: 

 

(a) First n-1 steps: Compute the i = 1, ..., n-1 largest real and 

nonnegative eigenvalues i  and associated eigenvectors iz  of Q , set 

 

    iv  = i  and ir  = 

i
T
i

i

Qzz

λ
iz , where 

T
i iz z  = 1. 

 

(b) Last nth step: Given iv  and ir , for i = 1, ..., n-1, so that nv  = v - 




1n
1i iv , compute 

 

    n  = real and only positive eigenvalue of n  =   - 
T
j

1n
1j jrr



 and 

 

    nz  = associated eigenvector, so that n
T
nzz  = 1, and set nr  = nn z)λ( . 
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(xi) Determine m = number of significant factors: 

 

Let m = minimum no. of structural disturbances that account for a specified 

fraction of the sum of weighted covariances, v =  
n

1i iv . 

 

For given  (e.g., .95), let m = minimal 1  m  n such that 
m

ii 1
v

 /v   . 

 

This definition of m ignores sampling variability of 
m

ii 1
v

 /v inherited from 

the data model, which can be accounted for probabilistically by, among other 

possibilities, T.W. Anderson’s (198x) normal approximations or A. Onatski’s 

(20xx, ..., 20yy) more exact results. 

 

The actual factors jt  are defined below. 
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3. Reduce a large VARMA data model of many variables to small VARMA factor 

   Model of primary variables. 

 

Objective is computing a “minimal” VARMA model of y1t in steps (i)-(vi): 

 

y1t = 
*
1A y1,t-1 + ... + 

*
qA y1,t-q + 

*
0B t + 

*
1B t-1 + ... + 

*
qB t-q, 

 

where t ~ IID(0,In) and "minimal" means q is minimal, dim(t) = dim(y1t) = r, 

and the MA part is invertible. 

 

(i) Estimate a VARMA data model for all variables in yt. 

 

(ii) Compute WCFD of the estimated VARMA model. 
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(iii) First step for reducing a VARMA data model to a VARMA factor model. 

 

Express the vector of primary variables y1t as the sum of m significant 

factors and a disturbance. 

 

The VARMA data model implies the transfer-function representation 

 

1ty  = i t ii 1
W R




   = 
n

i j j,t ii 1 j 1
W r


 

    = 
n

i j j,t ij 1 i 1
W r


 

    = 
n

jtj 1
 , 

 

so that 1ty  = 
n

jtj 1
 , where jt  = i j j,t ii 1

W r



   = jth “factor”. 

 

For given , let m = smallest integer from 1 to n, such that 
m

ii 1
v

 /v   . 

 

Then, 1ty  = 
m

jtj 1
  + tu , where tu  = 

n
jtj m 1 

  = “disturbance” of 

insignificant factors. 
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(iv) Second step for reducing a VARMA data model to a VARMA factor model. 

 

(a) Consider the following state-space representation for y1t: 

 

State equation xt+1 = Fxt + Gt, with 

 

F = 

































rrrr
*
q

r

rr

rr

rrrrr
*
1

0....0A

I......

0......

.0.

0...0IA

 = rqrq, G = 





























*
q

*
q

*
2

*
2

*
1

*
1

AB

.

.

AB

AB

 = rqq, 

 

and state vector xt = rq1, and observation equation y1t = Hxt + 
*
0B t, with 

H = [Ir, 0rr,...,0rr] = rrq. 

 

The objective is to determine a minimum value of q = 1, 2, ..., such that 

m
jtj 1

  acceptably accurately approximates 1ty . 
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(b) First, determine minimum s = rank of Hankel matrix H: 

 

Hankel matrix H = 

* *
1 rp

* *
rp 2rp 1

    
 

    
    
 
     

 = 

rp 1

rp 1 2rp 2

HFG HFF G

HFF G HFF G



 

  
 

    
    
 
   

 = OFC, where 

O = [HT, FTHT, ..., (Frp-1)THT]T = observability matrix and 

C = [G, FG, ..., Frp-1] = controllability matrix. 

 

We needn’t consider any larger H  with higher powers of F, because the 

Cayley-Hamilton theorem implies that H , O, and C achieve maximum rank when H 

is defined as above. 

 

Apply singular value decomposition (SVD) to H to determine s = rank(H). 

 

Note that the objective is to determine minimum q so that the VARMA(q,q) 

factor model reflects the significant dynamics of primary variables 1ty ; we 

would like q = s/r, but s/r may be non-integral. 
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(c) Compute VARMA coefficients of y1t in substeps (i) to (iii): 

 

(i) Compute minimal q of VARMA(q,q) model of y1t: 

 

Although a minimal state-space model of y1t always exits -- but not a minimal 

VARMA model of y1t -- we focus on computing the "closest to minimal" VARMA 

model of y1t because VARMA models are more parsimonious and are commonly used 

in economics and statistics. 

 

(1) For r = dim(y1t) = 1, q = int[s/r] = s, the minimal VARMA model exists, 

and it can be computed uniquely by solving the Hankel system below. 

 

(2) For r > 1 and q = int[s/r] < s/r, the Hankel system below may not be 

solvable, but, if it is, it won't reflect all significant y1t dynamics. 

 

(3) For r > 1 and q = int[s/r] + 1 > s/r, the Hankel system below is always 

solvable, will reflect all significant y1t dynamics, but will be non-minimal 

and non-unique. 
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(ii) Solve linear Hankel system for y1t's VARMA coefficients: 

 

First, solve  *1*
q AA 






















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




*

1q2
*
q

*
q

*
1

 =  *
q2

*
1q    

 

for the VAR coefficients 
*
iA  and, then, evaluate 
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


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










*
0

*
3q
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2q
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1q

*
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*
0

*
1

*
0

0

0
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0000



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































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q
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A

A

 for the VMA coefficients 
*
iB . 

 

 

(iii) If necessary, recompute the VMA coefficients to be invertible. 
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(v) Choose a statistically “best” model of y1t: 

 

One could further vary m and q to find a “best” model in some sense, e.g., 

that minimizes some information criterion or that produces the lowest RMSEs 

of out-of-sample forecasts for the particular case being considered. 
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4. Apply WCFD to U.S. 10 monthly leading indicators and quarterly GDP. 

 

Monthly Δln of leading index and 10 leading indicators and quarterly Δln 

of GDP from January 1959 to June 2002. 
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Estimated 11-variable monthly model and GDP-forecast RMSE. 

 

Estimated monthly VAR(1) model of 10 monthly leading indicators and quarterly 

GDP in Δln form and RMSE of monthly forecasts of GDP. 

 

Var. LI1 LI2 LI3 LI4 LI5 LI6 LI10 GDP 

2
eR  .132 .106 .172 .135 .202 .159 .101 .443 

Q 66.6 27.3 51.1 50.4 83.4 36.9 60.9 29.0 

p .000 .293 .001 .001 .000 .045 .000 .000 

Months Ahead RMSE SRMSE Theil U 

1 .596 1.03 .744 

2 .664 1.14 .829 

3 .725 1.25 .905 

6 .649 1.12 .834 

12 .623 1.07 .720 

24 .636 1.09 .680 

Average 1-24 .638 1.10 .720 

 

 

There are 401 in-sample model-estimation months from February 1959 to June 

1992, 187 estimated VAR parameters, and 120 out-of-sample GDP-forecast-

evaluation months from July 1992 to June 2002. 

 

SRMSE denotes RMSE of the model's GDP forecasts divided by out-of-sample 

standard deviation of GDP and Theil U denotes RMSE of the model's GDP 

forecasts divided by RMSE of naive GDP forecasts taken as the last available 

monthly observations on quarterly GDP. 
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Percentage WCFD and RMSE of monthly forecasts of GDP of derived monthly  

UARMA(2,1) model of GDP based on accounting for ρ = 95% of GDP variation. 

 

 

WCFD for h = 12 months 

 

WCFD 1 2 3 4 5 6 7 8 9 10 11 m 

1 .258 .163 .104 .080 .074 .065 .062 .057 .055 .047 .035 10 

2 .766 .174 .047 .012 .001 .000 .000 .000 .000 .000 .000 2 

 

Monthly GDP model implied by WCFD = 2 

 

3lnGDPt = .9933lnGDPt-1 - .1913lnGDPt-2 + t - .279t-1 
 

σς = 1.18,  |AR| = .732, .261,  |MA| = .279 

 

Months Ahead RMSE SRMSE Theil U 

1 .632 1.09 .790 

2 .632 1.09 .790 

3 .632 1.09 .790 

6 .619 1.07 .795 

12 .636 1.10 .735 

24 .636 1.10 .680 

Average 1-24 .633 1.09 .714 

 

WCFD = 1 means all variables are weighted equally and WCFD = 2 means only GDP 

is weighted positively. 

 

No AR roots are filtered out. 
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5. Conclusions. 

 

(i) Average RMSE of 1-24 month-ahead out-of-sample GDP forecasts of the 

monthly UARMA(2,1) factor model of GDP are about the same as those of the 

monthly VAR(1) 11-variable data model. 

 

(ii) Nelson (AER, 1972) showed empirically that small UARMA models can 

forecast quarterly U.S. macroeconomic variables more accurately than large 

econometric models. 

 

(iii) The application shows that the information in a large VARMA data model 

of many variables, informative or not for forecasting a small subset of 

primary variables, can be passed by WCFD to a small VARMA factor model of the 

primary variables. 

 

(iv) This ability appears to depend on observability matrix O having full 

rank, hence, the VARMA factor model being observable. For single-frequency 

data, O always has full rank; for mixed-frequency data, O  may or may not 

have full rank and, if it does, this depends on the model parameters. See 

Zadrozny (J. Econometrics, 2016). 


