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Motivation

• Job loss has long lasting and

persistent detrimental effects on

workers

• To design effective policy

responses, we need to

understand:

1. How do earnings losses differ

across individuals?

2. What are the sources of large

and persistent earnings losses?

3. Why do earnings losses vary

over the business cycle?

Big Data: Universe of Austrian social security records

from 1984-2019
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This paper

We use machine learning to answer all these & more questions
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3 Methodology

Typical approaches for studying heterogeneity:

Structural models ú losses driven by assumed theories.

Reduced-form models ú cut by variables motivated by assumed theories.

We want to be theory-agnostic but at the same time not theory-blind.

• Adapt a machine-learning algorithm (Athey et al. 2019) to difference-in-difference

setting:

⇒ Estimate causal cost of job loss as a function of worker and job characteristics + SE
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3 Methodology

• How do earnings/employment/wage/firm wage losses vary across individuals?

• Conceptually, we estimate

yit = τ(z i )1(t ≥ t∗)× Di + θ(z i )Di + γt(z i ) + εit .

Sample construction

• Goal: Estimate how causal cost of job loss varies with explanatory (partitioning variables)

z , i.e. τ(z)

• Explanatory variables: Firm wage premia (AKM), firm separation rate, job tenure,

recession indicator, regional factors, firm characteristics, match effect (residual),

socio-demographics
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Contribution to the Literature

• Estimate large and persistent earnings losses for Austria

Jacobson et al. (1993), Davis and Von Wachter (2011), Halla et al. (2018)

• Comprehensive study of channels behind losses

Lachowska et al. (2020), Schmieder et al. (2020)

• Provide guidance for structural models

Burdett, Carrillo-Tudela, and Coles (2020); Jarosch (2021); Gregory, Menzio, and Wiczer (2021)

• Machine-Learning in economics:

Athey et al. (2019); Athey and Imbens (2016)
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� Preview of the Main Results

• Large differences in earnings losses across individuals:

1. A quarter of workers lose 30% on average in terms of wages

2. A quarter of workers gain on average

• Jointly estimate how losses vary with 18 variables ⇒ Horse-race between theories

• Most important factor: Firm wage premia (AKM)

• Explains 42% of variation in log-wage losses

• Earnings losses are cyclical:

1. 90% explained by Composition Effect: Different workers lose jobs in booms/recessions

2. 10% explained by Pure Recession Effect: Identical workers face higher losses in recessions

• Gender differences fully explained by composition

• Implications: Labor market policies aiming to mitigate cost of job loss should be targeted

and rather time-invariant
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Causal Tree

Firm FE < 7.5

Firm FE < 3.5

Firm Sep. Rate < 8.5 Match Eff. < 6.5

Market Sh. < 7.5

Age < 46.5

Firm FE < 5.5

Market Sh. < 2.5

Age < 38.5

Match Eff. < 4.5

Firm FE < 8.5 UE Ind. < 9.5

Age < 43.5

Firm Size < 7.5

Age < 36.5

−6445
100.0%

−4189
58.8%

−605
13.1%

−2767
8.6%

2626
4.4%

−4976
45.7%

−3529
29.8%

−3221
26.1%

−2902
22.6%

−2004
9.7%

−3498
12.9%

−2122
3.8%

−3848
9.0%

−5229
3.5%

−5963
3.7%

−7777
15.9%

−5744
7.8%

−9888
8.2%

−9131
41.2%

−6834
14.2%

−4797
4.9%

−7744
9.3%

−10291
27.1%

−11114
23.3%

−9985
16.7%

−9096
12.4%

−8109
7.2%

−10331
5.2%

−12820
4.3%

−13708
6.6%

−5877
3.8%

yes no
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Random Forest

• One single tree has high variance, might be subject to overfitting

• ⇒ Random Forest as ensemble of many (10,000) trees

1. Sample 50 % of observations from dataset

2. “Honest” estimation (Athey et al., 2019)

3. Sample ≈1/3 of partitioning variables

4. Grow tree as described before
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ÿ Heterogeneity in Earnings Losses
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ÿ Heterogeneity in Earnings Losses: Wages and Employment

Individuals stacked by quartiles of identified earnings losses.
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� Comparative statics

• Now we know that indeed there is heterogeneity in earnings losses.

But can we say anything about the drivers of those losses?

• Varying one channel at a time. All other variables fixed at their median. Why is it important?
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Losses in Earnings & Employment by Firm FE
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• Steep slope in earnings losses by Firm FE

• No variation in employment losses
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Losses in Wages & Firm FE by Firm FE
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• Mean reversion in firm pay
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� Variable Importance for Earnings Losses

Firm Wage Premia first order

Recession
Austrian

Manufacturing
# Employers

Female
U−rate Region

Blue Collar
Market Share

Firm Age
Herfindahl

Avg. Region Firm FE
Job Tenure

U−Rate Ind.
Age

Firm Size
Firm Sep. Rate

Match Effect
Firm FE

0.0 0.2 0.4 0.6
Importance
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Variable Importance
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Cyclicality of Losses

• Many labor market policies are enacted/extended in recessions:

• Extended UI benefits in US

• Firm bail-outs

• Short time work subsidies

• Motivation: job loss has been shown to be more costly in recessions

Davis and Von Wachter (2011), Schmieder et al. (2020)

• Is it the effect of recessions, or is it compositional differences of displaced workers?

14/18



Recession effect vs. compositional difference

Cyclicality of losses,
∫
τ(z|rec = 1)dF (z|rec = 1)−

∫
τ(z|rec = 0)dF (z|rec = 0), can be

decomposed in two ways:

1. recession distr.:
∫

[τ(z|rec = 1)− τ(z|rec = 0)]dF (z|rec = 1)︸ ︷︷ ︸
Recession effect

+∫
τ(z|rec = 0)dF (z|rec = 1)−

∫
τ(z|rec = 0)dF (z|rec = 0)︸ ︷︷ ︸

Compositional difference

2. expansion distr.:

∫
τ(z|rec = 1)dF (z|rec = 1)−

∫
τ(z|rec = 1)dF (z|rec = 0)︸ ︷︷ ︸

Compositional difference

+∫
[τ(z|rec = 1)− τ(z|rec = 0)]dF (z|rec = 0)︸ ︷︷ ︸

Recession effect

Recession Effect Composition

Difference Level Share Level Share

Recession dist. -513.35 -60.00 0.12 -453.34 0.88

Expansion dist. -513.35 -54.66 0.11 -458.69 0.89
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ûPolicy Targeting

• Suppose the govt. wants to detect displaced individuals with relative wage losses above

the median level.

• According to GDPR (2016/679), all people have the right to explanation, i.e. “meaningful

information about the logic involved” in automated decisions. For this reason:

• we project the identified log-wage losses through our forest on a single policy tree;

• we exclude four partitioning variables that may be difficult to understand by most people:

i. firm wage premia,

ii. regional average firm wage premia,

iii. concentration of the labor market,

iv. and workers’ match effect.
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ûPolicy Targeting (cont’d)

The algorithm detects 3 groups of individuals

with high relative losses:

• Middle-income individuals displaced from

larger firms.

• High-income individuals displaced from

not the riskiest firms.

• High-income individuals with low

job-mobility displaced from the riskiest

firms.

Prior Income < 6.5

Firm Size < 6.5

Prior Income < 3.5

Firm Sep. Rate >= 8.5

# Employers >= 2.5

0
0.500

100.0%

0
0.337
59.9%

0
0.258
41.1%

1
0.511
18.8%

0
0.293
6.3%

1
0.621
12.5%

1
0.742
40.1%

0
0.446
6.5%

0
0.327
4.0%

1
0.636
2.5%

1
0.800
33.7%

yes no
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Conclusions �

• Use machine learning to understand sources of

earnings losses

• Document substantial heterogeneity

(much more than linear interactions or quantile regression)

• Losses in firm wage premia most important channel

• Cyclicality of losses driven mainly by the

compositional effect

• Labor market policies should be targeted, and

time-invariant

Estimate your own earnings losses:

Link: gulyas-pytka.app

Thanks for your attention!
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Sample Construction

• Universe of Austrian social security data 1984-2019

• Definition mass layoff event:

1. Firm size declines by ≥ 30 %

2. Firm size ≥ 30 employees

3. Exclude fast growing firms before mass layoff, and firms that bounce back in size

• Sample Restrictions:

1. Male & female workers

2. Worker age: 25-50

3. Job tenure ≥ 2 years

• Control group selected via propensity score matching
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Correlogram of pre-displacement characteristics
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1. Female

2. Austrian

3. Job Tenure

4. Age

5. Firm Size

6. Blue Collar
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8. Market Share

9. Firm FE

10. Manufacturing

11. Avg. Region Firm FE

12. Firm Sep. Rate
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14. Firm Age

15. U−rate Region

16. U−Rate Ind.

17. Recession

18. # Employers
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Why to keep confounding factors fixed? (illustrative example)

• Imagine a simple economy with two

sectors: production and services.

• There are equally numerous groups of

workers: high-school educated and college

educated.

• There is sectoral sorting:

• 20% of the high-school educated work in

services and 80% in production.

• 80% of the college educated work in

services and 20% in production.

• Cognitive Booster Pills increase cognitive

productivy. Higher marginal effect for HS

educated and services.

Table 1: Productivity increase after Pills

Production Services

High School $1.0 $10

College degree $0.7 $7

zHeterogeneous TEs in education

subgroups:

• Treatment effect for high-school educated:

80% · $1 + 20% · $10 = $2.79

• Treatment effect for college educated:

20% · $0.7 + 80% · $7 = $5.74

This simple accounting ignores

compositional differences!
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Why to keep confounding factors fixed? (illustrative example)

sector = production

education = college education = college

4.3
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10%

1
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7.6
50%

7
40%

10
10%

yes no

Case with two dummies is (intentionally) trivial. Real-world problems become more and more

complicated if there are more variables. Which variables should be kept fixed and which can be

ignored? útask for the ML algorithm!
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Why do we need Machine Learning at all?

• Why not use interaction effects (or subsample estimations)?

• Which interaction effects to include?

20.8 trillion! (20.8×1012) possible interaction effects with our 18 variables

• Typical approach in the literature: Sample split, i.e. short vs long tenure

Issue: tenure likely correlated with many other characteristics

• We estimate losses by varying one factor at a time, holding all other factors constant at

the median.
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