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Basic network shapes - symmetry and density

Empty network -
symmetric and sparse

1

2

3
4

5

6

7
8

9

Interconnected
network - symmetric

and dense

1

2

3

4

5

6

7

8

9

Star network -
asymmetric

1

2 3

4

5

6

7

8

9

• What are the consequences of the shape of the network for the
transmission and amplification of sectoral impulses into aggregates and
prices?

• Lucas (1987) — as we disaggregate the economy into finer sectors,
independent sectoral disturbances tend to average out, leaving
aggregates unchanged (a weak propagation mechanism)
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Production network of the Polish economy

• Graph of the network
without small edges —
below cost shares
associated with
symmetrically distributed
costs

• Size and darkness of the
nodes are proportional to
Bonacich (1987) centrality
measure

• Economy is a mixture of
some important hubs
plunged into
almost-complete network
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Literature overview

• Sources of macroeconomic fluctuations — micro-volatility (see e.g.
Gabaix, 2011) or sectoral patterns

• The literature on production networks indicates non-neutrality of the
network shape for the aggregates

• Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012) showed that a
sufficient heterogeneity in sector’s role as input supplier results in higher
sectoral shock amplification

• Baqaee and Farhi (2019) stressed the importance of non-linearities in shock
propagation

• In particular, Atalay (2017) showed that the extent of substitution is
important — share of aggregate output volatility explained by sectoral
shocks rises from 21% in CD case to 83% with ϵ − 0.1 in the US

• Most of the literature concentrates on aggregates
• Baqaee and Farhi (2018) is an important exception
• Carvalho (2014) — cross-sectoral output correlation declines with network

distance
• The research on prices is less developed:

• mostly oriented on markups: Bigio and La’O (2020) or Baqaee and Farhi
(2020)

• or on input-price pass-through, like in Duprez and Magerman (2018)
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Our contribution

• We concentrate on the ability of the network structure to:
• amplify sectoral productivity shocks into the macroeconomic aggregates
• generate comovement of sectoral variables

• We show the results not only for the real aggregates, but also, what is
novel in the literature, for relative sectoral prices of output

• Most of the literature concentrates on US, we will presents results for
Poland, a smaller, less developed but simultaneously interconnected
economy

• Caveat: we do not use nonlinearities
• A sketch of results:

• productivity shocks account for 24-30% of total economy GDP volatility and
the network amplification is 3.1

• closely connected sectors tend to comove
• tfp shocks explain about 24%-29% of the observed dispersion in relative

price variation, mostly through volatility, not covariance - the amplification
factor is roughly 2.1

• distance in network seems to be less pronounced in price comovement (than
in case of output comovement)

• covariance of tfp shocks is important in transmission into price
comovement, but the shock explains a tiny fraction of its dispersion
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A sketch of the theoretical model
• Consider a static economy where production takes place at n distinct

nodes with

yi = ziκil
αi
i

n

∏
j=1

x
aij

ij , (1)

• aij can be collected into the Leontief IO matrix A = [aij], which defines a
network with nodes, edges and weights

• With simple form of the utility of households,

u(c1, . . . , cn) = ∑n
i=1 βi log

(
ci
βi

)
, it can be shown that the prices that

solve for competitive equilibrium are:

p̂ = Ap̂ − ϵ, (2)

where p̂i = log (pi/w) and ϵi = log zi measures tfp.
• GDP can be expressed as (for details see e.g. Carvalho and

Tahbaz-Salehi, 2019):

log GDP =
n

∑
j=1

λjϵj, (3)

where the Domar weights λi = piyi/GDP obey λ = (I − A′)−1β.
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Volatility and comovement of real and nominal
quantities

• Equation (3) implies that:

std(log GDP) =
σ/α√

n

(
1 + (nα)2var(λ1, λ2, . . . , λn)

)1/2
. (4)

stating that volatility of GDP is a function of dispersion of size of the
nodes in the network, which in turn with normalization of βi = 1/n
becomes λi = φi n, where φ is a Bonacich (1987) measure of network
centrality.

• Using definition of a Leontief matrix L = (1 − A)−1 equation (2) implies
that p̂ = −Lϵ, so:

vcov(p̂) = LΣϵL′ (5)
• We will use these equations, together with the three definitions of

network to asses its ability to generate volatility and comovement
• empirical (observed) network
• symmetric dense network, with elements defined as: 1−α

n• symmetric sparse network with diagonal A and aii = 1 − α
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Data and the measurment of tfp and relative prices

• We use IO matrix for 2015 published by the Polish CSO to measure A
and related structures and sectoral time series from Eurostat national
accounts to measure volatilities

• We aggregated 77 sectors from original IO into 60 sectors consistent with
Eurostat data.

• Log level of tfp is measured consistently with equation (1): it’s defined
for output, it uses materials, labor and additionally capital to account for
measurable factors and nominal cost shares as factor shares (available
for years 2000-2017)

• Phillis-Perron and ADF suggest I(1) for all sectors except for two sectors
— tfp shocks ϵi are inferred form: ∆tfpit = ρ0 + ∑j ρi∆tfpit−j + ϵt with
three assumptions:

• ρj = 0, assuming pure random walk shocks
• ρ1 ̸= 0, ρj>1 = 0, assuming estimated AR(1) coefficient
• ∀jρj = BIC, estimated AR model with lags chosen using BIC criterion with

max. lag = 3

• Relative prices p̂it are measured as sectoral deflator of output relative to
total economy value added deflator (1996-2019) — in 66% sectors real
prices are I(0)
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Outliers

Figure: Volatilities of tfp
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Figure: Volatilities of real prices
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• Outliers detected as both: interquartile range (IQR) criterion at sectoral
level AND 4% highest/lowest observations at economy level

• IQR criterion - outliers outside [q0.25 − 1.5 · IQR, q0.75 + 1.5 · IQR]
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Aggregation of sectoral TFP volatility to output
volatility

Table: Volatility of GDP implied by the Polish production network

shock mean σGDP
1
n ∑(σi) σIO σsymmetric

σIO
σGDP

σsymmetric
σGDP

ρi = 0 unweighted 0.047 0.035 0.014 0.004 0.293 0.094
ρi = 0 weighted 0.047 0.030 0.012 0.004 0.254 0.081
ρ1 ̸= 0, ρi>1 = 0 unweighted 0.047 0.033 0.013 0.004 0.284 0.091
ρ1 ̸= 0, ρi>1 = 0 weighted 0.047 0.029 0.012 0.004 0.243 0.078
ρi = BIC unweighted 0.047 0.034 0.014 0.004 0.286 0.092
ρi = BIC weighted 0.047 0.029 0.012 0.004 0.248 0.079

Notes: shock are defined as ϵt from model: ∆tfpt = ∑i ρi∆tfpt−i + ϵt

• σ is measured as a a (weighted or unweighted) cross-sector average of
σi, where σi is sectoral tfp volatility (standard deviation)

• The shock amplification of the network is 3.12
• Sectoral tfp volatility explains 24%-30% of total GDP volatility
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Correlations across outputs and across tfp shocks

• TFP shock cross-correlations are
centered at 0, but there exists both
positive and negative industry
pairs

• Cross-correlations between
output log-changes are primarily
positive, centered at 0.25, but
there are also cases of negative
cross-correlations

Figure: Cross-correlations between sectoral
tfp shocks (optimal AR) and
cross-correlations between sectoral outputs
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Correlation of outputs and distance in network

• Network distance is defined as
the shortest path between nodes

• Network connections were
reduced to create more sparse
network (density of original
network is 0.92 vs 0.13 with
threshold set at 3 times node size
in symmetric dense network -
0.027) - see Appendix

• Confidence intervals calculated
using a Fisher z-transformation to
normal

• Sectors that are closer to each
other tend to be more correlated,
similar to Carvalho (2014)

• Results are robust to the
threshold level - see Appendix

Figure: Correlation of outputs as a function of
network distance
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Volatility of observed and implied relative prices
for empirical and symmetric sparse networks

Figure: Distributions of volatilities of
relative prices - observed and implied by
empirical network
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Figure: Distributions of volatilities of
relative prices - observed and implied by
symmetric networks
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Volatility of observed and implied relative prices

• Consider an equation:

σ
p
i = β0 + βσ

implied
i + ηi (6)

• Ideally, β0 = 0, β = 1 and R2 = 1
• β0 ̸= 0 implies bias, on average
• β ̸= 1 informs about the average

scaling factor
• R2 informs about fraction of

variance explained

Figure: Implied and observed volatilities of
outputs
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Transmission of shock volatility into price volatility
shock network β tβ R2

β γ tγ R2
γ

ρi = 0 observed 0.781 4.822 0.290 -0.842 -1.118 0.021
ρ1 ̸= 0, ρi>1 = 0 observed 0.707 4.235 0.239 -1.350 -1.513 0.039
ρi = BIC observed 0.758 4.702 0.279 -0.952 -1.218 0.025
ρi = BIC dense 0.551 3.050 0.140 -0.18 -0.127 0
ρi = BIC sparse 0.253 3.029 0.139 — — —

Notes: shock are defined as ϵt from model: ∆tfpt = ∑i ρi∆tfpt−i + ϵt

• In all estimations β0 was statistically 0 — no bias
• Implied variance is too high, on average it needs to be rescaled down by

a factor of 0.75
• Implied variance explain about 24%-29% of observed variation in σp

• The symmetric networks explains 14% of volatility dispersion - the
amplification factor is roughly 2.1

• The variance (diagonal terms) are the most important in variance
propagation — last 3 columns show the estimates of:

σ
p
i = γ0 + γ(σ

implied
i − σ

diag
i ) + ηi (7)

• It explains why volatility is the highest in sparse network - diagonal
network streamlines directly tfp volatility into prices
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Cross-correlations in sectoral prices

Figure: Distributions of cross-correlations
in sectoral prices - variance of tfp (AR
optimal) shock only
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Figure: Distributions of cross-correlations
in sectoral prices - whole vcov matrix of tfp
(AR optimal) shock
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Transmission of shock volatility into price volatility

shock cov network CD p-val Steiger p-val

ρi = BIC diag empirical 10.60 0 2012.65 0
ρi = BIC full empirical 32.37 0 3033.21 0
ρi = BIC full dense 37.00 0 2891.35 0
ρi = BIC full sparse 7.71 0 2798.47 0
ρ1 ̸= 0, ρi>1 = 0 diag empirical 10.06 0 2009.87 0
ρ1 ̸= 0, ρi>1 = 0 full empirical 27.46 0 2806.43 0
ρi = 0 diag empirical 10.42 0 2013.73 0
ρi = 0 full empirical 30.10 0 2921.34 0

Notes: shock are defined as ϵt from model: ∆tfpt = ∑i ρi∆tfpt−i + ϵt

• Pesaran (2021) CD tests of cross-sectional dependence show in all cases
that the implied covariance matrices are different from zero (with the
smallest statistics in symmetric sparse network)

• All Steiger (1980) tests reject the null hypothesis all the correlations are
equal to the observed one

• So, vcov matrices of sectoral prices generated by tfp shocks are not zero
but simultaneously do not equal to the observed one
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Transmission of shock volatility into price volatility

shock cov network β p-val R2 |ρ| SMI RVadj PSI

ρi = BIC diag empirical 0.44 0 0.01 0.06 0.13 0.04 0.44
ρi = BIC full empirical 0.15 0 0.02 0.29 0.17 0.10 0.41
ρi = BIC full dense 0.17 0 0.02 0.29 0.13 0.10 0.40
ρi = BIC full sparse 0.18 0 0.02 0.24 0.13 0.14 0.43
ρ1 ̸= 0, ρi>1 = 0 diag empirical 0.50 0 0.01 0.06 0.13 0.05 0.44
ρ1 ̸= 0, ρi>1 = 0 full empirical 0.18 0 0.03 0.27 0.18 0.12 0.44
ρi = 0 diag empirical 0.43 0 0.01 0.06 0.15 0.05 0.44
ρi = 0 full empirical 0.17 0 0.02 0.28 0.17 0.13 0.44

Notes: shock are defined as ϵt from model: ∆tfpt = ∑i ρi∆tfpt−i + ϵt

• β from regression ρ
p
ij = β0 + βρ

implied
ij + ηij (for j < i) show that

covariance of tfp shocks is important in transmission into price
comovement, but it explains up to 3% of its dispersion

• Different matrix similarity measures — SMI of Indahl, Næs, and Liland
(2018), matrix correlation RVadj (Mayer, Lorent, and Horgan, 2011) and
Procrustes Similarity Index (Sibson, 1978) show:

• lower similarity when only variances of tfp shocks are considered
• not much differences between tfp identification schemes and, surprisingly,

between empirical and symmetric network

• |ρ| measures mean absolute correlation and is 0.28 in the data
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Comovement of relative prices in the network

• Theoretical model generates the
general shape of comovement
found in the data (density and
mean-abs correlation) but is weak
at predicting individual
cross-correlations

• It may be due to the different
shocks affecting prices...

• but also the sectoral dimension of
the price cross-correlations is not
very strong

Figure: Cross-correlation of relative prices
as a function of network distance
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Conclusions

• Productivity shocks account for 24-30% of total economy GDP volatility
and the network amplification is 3.1

• The output of closely connected sectors tend to comove
• TFP shocks explain about 24%-29% of the observed dispersion in

relative price variation
• mostly through shock volatility - the role of covariance of tfp shock is

negligible
• the amplification factor is roughly 2.1 (fraction of dispersion explained of

observed network versus the fraction of hypothetical symmetric network)

• Theoretical model generates the general shape of comovement found in
the data (density and mean-abs correlation) but is weak at predicting
individual cross-correlations

• A distance in network seems to be less important in price comovement
(than in case of output comovement)

• Covariance of tfp shocks is important in transmission into price
comovement, but the shock explains a tiny fraction of its dispersion
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Outliers in real prices
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Network degree as a function of cut-off threshold
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The importance of threshold in distance in network

Figure: Correlation as a function of network distance for different thresholds cutting
small connections
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