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What is time deformation and why do we care?
Time deformation à la Burns and Mitchell (1946)
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I Statistical accuracy - improvements in statistical testing/forecasting

I Policy insights - this time might NOT be di�erent

I Economic insights into drawbacks when using benchmark macro-models



Contribution of this project

I Improve our understanding of �nancial cycle dynamics

I In particular, assess the extent of time deformation in the �nancial cycle i.e.
shrinkage and dilation of cycles in calendar time?

I Try to identify variables that re�ect the nature of the time deformation?



Modeling time deformation - Stock (1987)

I Financial cycle follows continuous-time autoregressive (CAR) process f (s):

df (s)

ds
= λ f (s) +dη(s) var(dη(s)) = Q

I The operational time scale s di�ers from calendar time scale t
I f (s) has stable parameters: λ and Q in s

I The time scale is unknown so it is not possible to observe f (s)
I Observations Yt are discretely sampled and equally-spaced in calendar time

I This corresponds to sampling from the process f (s) at an irregular frequency

I Denoting the mapping of s into t by s=g(t):
I Yt = f (g(t)) t = 1, ...,T
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Mapping operational time into calendar time

I The g function has to be monotonically increasing, but can also depend on a set of
z
I While z can include (lags of) Yt , it needs to be pre-determined at time t�1

I Following Stock(1988) we assume the following form of time deformation:

∆g =
exp(c ′zt−1)

∑
N
i=2 exp(c ′zi−1)/(N−1)

∆t

I when c = 0, calendar time is proportional to �nancial cycle time, hence there is no
time deformation

I zt−1 is set of macro-�nancial variables �slowing down� or �speeding up� of the
�nancial cycle



The calendar time representation

I f (s) can then be expressed in (discrete) calendar time a TVP-AR:

f (t) = at f (t−1) + vt var(vt) = Qt

at = eλ∆g(t,czt−1)

Qt =
∫ ∆g(t,czt−1)

0
eλ(∆g(t,czt−1)−s)Qeλ(∆g(t,czt−1)−s)ds

I The parameters vary systematically with the g function
I A larger ∆g(t;zt–1) corresponds to a compression of t with respect to s

I Calendar time accelerates
I So the process has a larger variance
I And a weaker dependence on its past values
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CAR(1) model - example of time deformation
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Our model

Observable variables driven by �nancial cycle:

y(t) = f (g(t,z))

Financial cycle dynamics - CAR(1)

df (g(t,z))

dg(t,z)
= λ f (g(t,z)) +dη(g(t,z)) var(dη(g(t,z))) = Q

Time deformation function:

∆g =
exp(c ′zt−1)

∑
N
i=2 exp(c ′zi−1)/(N−1)

∆t



Data

I Y : Credit to households scaled by (potential) GDP

I z : variables likely to accelerate/slow down the �nancial cycle

I We hypothesize that variables related to attitudes towards risk could play a role:
I Real long-term interest rate
I Volatility of in�ation
I NVIX
I Corporate spreads



Baseline Results

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

λ -0.83 -0.65 -0.84 -0.83 -0.82 -0.67

[-3.13] [-3.07] [-3.38] [-3.29] [-3.33] [-3.01]

Q 0.01 0.01 0.01 0.01 0.01 0.01

Real LT rate 0.53 0.33

[6.92] [3.16]

In�ation vol. 0.26 0.30

[2.50] [2.17]

Corp. spread 0.87 0.56

[9.36] [4.76]

NVIX 0.54 0.22

[5.93] [2.00]

LogL -722 -747 -730 -761 -741 -771

LR-test 50 16 78 38 98

p-value 0.00 0.00 0.00 0.00 0.00

Credit and house prices
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Baseline results
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Baseline results - di�erent perspective



Additional variables

Model 6 Model 7 Model 8 Model 9 Model 10

λ [-3.01] [-2.84] [-3.01] [-3.04] [-2.91]

Real LT rate [3.16] [1.84] [3.63] [1.88] [3.52]

In�ation vol. [2.17] [1.06] [-0.45] [3.51] [1.62]

Corp. spread [4.76] [5.07] [6.71] [4.62] [5.07]

NVIX [2.00] [1.22] [-0.85] [2.10] [2.15]

Rates slope [-1.78]

GDP vol. [3.93]

NBER recession [5.18]

FC contraction [2.47]

LogL -771.41 -773.00 -779.17 -788.69 -774.48

LR 3.17 15.52 34.56 6.14

p-value 0.05 0.00 0.00 0.01



Di�erent regimes

Gold standard Post-WWII Repression Great Recession

Gold standard 1890-1913 x 0.57 -1.6

x [2.11] [-4.04]

World Wars 1914-20, 1939-45 0.1 0.68 -1.49

[0.3] [2.12] [-3.48]

Roaring Twenties 1921-28 2.68 3.25 1.08

[6.72] [8.58] [2.28]

Great Depression 1929-38 2.54 3.11 0.94

6.08 [7.8] [1.92]

Post-WWII Repression 1946-79 -0.57 x -2.17

[-2.11] x [-5.79]

Regean Rivival 1980-2006 1.06 1.63 -0.54

[3.67] [6.26] [-1.39]

Great Recession 2007-16 1.6 2.17 x

[4.04] [5.79] x



Di�erent regimes



What drives time-deformation a bit of theory

I State-contingent decisions
I Rational inattention - Sims (2010); Bacheta and van Wincoop (2010)
I Behavioural inattention - Gabaix (2017)

I Psychological time interest rates (Forgetfulness and discounting) - Allais (1972),
Allais and Barthalon (2014)
I Time preference shocks - Albuquerque, Eichenbaum, Rebelo (2016)
I Diagnostic expectations - Bordalo, Gennaioli and Shleifer (2017)



Conclusions

I We jointly estimate the time series behaviour of �nancial conditions and the nature
of the time deformation
I We found statistical evidence of signi�cant time deformation in the US �nancial cycle
I Its extent appears to be associated with measures of subjective risk perceptions

I To understand the wider implications of these �ndings theoretical models are
needed
I Models should be able to match the stylised facts about time deformation
I Having identi�ed variables associated with time deformation provides a road map



Thank you!



Our measure of the �nancial cycle?
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I Credit to private non-�nancial sector scaled by potential GDP;

I Smoothed using band pass �lter - (7,30)



... vs Drehmann et al (2012)
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The �nancial cycle and �nancial crises

I Financial cycle vs business cycle LINK1

I Financial cycle measured using credit and house-price data LINK2



The �nancial and business cycles in the United States

Back



Financial cycle measured using credit and house-price data

Back



Robustness - credit and property prices

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

λ -1.10 -1.00 -1.09 -1.04 -1.15 -0.92

[-7.58] [-3.56] [-3.66] [-3.57] [-3.75] [-3.39]

Q 1.96 0.43 0.44 0.46 0.46 0.64

Real LT rate 0.44 0.36

[4.04] [2.68]

In�ation vol. 0.20 0.21

[1.98] [1.58]

Corp. spread 0.76 0.53

[6.01] [3.69]

NVIX 0.33 0.06

[2.75] [0.49]

LogL -117 -126 -120 -135 -122 -140

Back



To-do list

I Increase AR order
I Improvement in the statistical �t

I Go multivariate
I Joint modeling of di�erent �nancial indicators (e.g. credit and property prices)

I Consider long memory
I Does time deformation induce spurious long memory in the observed series


