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Abstract

This paper examines the implications of imperfect information (II) for optimal monetary

policy with a consistent set of informational assumptions for the modeller and the private

sector – the ‘Informational Consistency Principle’ (ICP). We use an estimated simple NK

model from Levine et al. (2010), where the imposition of the ICP significantly improves

the fit of the model to US data. The questions we then address are first, what are the

welfare costs associated with the private sector possessing only II of the state variables;

second, what are the implications of II for the gains from commitment; third, how does II

affect the form of optimized Taylor rules and finally how do interest rate zero-lower-bound

considerations impact on optimal policy with II.
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1 Introduction

The formal estimation of DSGE models by Bayesian methods has now become standard.1

However, as Levine et al. (2007) first pointed out, in the standard approach there is an

implicit asymmetric informational assumption that needs to be critically examined: whereas

perfect information about current shocks and other macroeconomic variables is available

to the economic agents, it is not to the econometricians. By contrast, in Levine et al.

(2007) and Levine et al. (2010) a symmetric information assumption is adopted. This can

be thought of as the informational counterpart to the “cognitive consistency principle”

proposed in Evans and Honkapohja (2009) which holds that economic agents should be

assumed to be “about as smart as, but no smarter than good economists”. The assumption

that agents have no more information than the economist who constructs and estimates the

model on behalf of the policymaker, amounts to what we term the informational consistency

principle (ICP). Certainly the ICP seems plausible and in fact Levine et al. (2010) shows

that this informational assumption improves the empirical performance of a standard NK

model.2

The focus of our paper here is on the implications of imperfect information (II) for

optimal monetary policy in a model estimated assuming the ICP. The questions we pose

are first, what are the welfare costs associated with the private sector possesses only II of

the state variables; second, what are the implications of II for the gains from commitment;

third, how does II affect the form of optimized Taylor rules and finally how do interest rate

zero-lower-bound considerations impact on optimal policy with II.

A sizeable literature now exists on this subject - a by no means exhaustive selection

of contributions include: Cukierman and Meltzer (1986), Pearlman (1992), Svensson and

Woodford (2001), Svensson and Woodford (2003), Faust and Svensson (2001), Faust and

Svensson (2002) Aoki (2003), Aoki (2006) and and (Melecky et al. (2008).3 However, as far

as we are aware, it is the first paper to study the latter in a estimated DSGE model with

informational consistency at both the estimation and policy design stages of the exercise.

The rest of the paper is organized as follows. Section 2 describes the standard NK

model used for the policy analysis and section 3 describes the estimation by Bayesian

methods drawing upon Levine et al. (2010). Section 4 sets out the general framework for

calculating optimal policy. Section 5 assumes perfect information for both the private sector

and the policymaker setting out solution procedures for optimal policy, first assuming an

ability to commit, second assuming no commitment mechanism is available and the central

bank exercises discretion and third, assuming policy conducted in the form of a simple

interest rate, Taylor-type rule. A novel feature of treatment is the consideration the zero

1See Fernandez-Villaverde (2009) for a comprehensive and accessible review.
2The possibility that imperfect information in NK models improves the empirical fit has also been ex-

amined by Collard and Dellas (2004), Collard and Dellas (2006), Collard et al. (2009), although an earlier
assessment of the effects of imperfect information for an IS-LM model dates back to Minford and Peel (1983)

3Section provides a taxonomy of the various assumed information structures assumed in these papers.
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lower bound in the design of policy rules. In section 5 we assume perfect information -

both the central bank and the private sector (but not the econometrician) observe the

full state vector describing the model model dynamics. Section 6 relaxes this assumption

and considers rules that correspond to the ICP adopted at the estimation side. Section 7

provides an application to our estimated DSGE model. Section 8 concludes.

2 The Model

We utilize a fairly standard NK model with a Taylor-type interest rate rule, one factor of

production (labour) and constant returns to scale. The simplicity of our model facilitates

the separate examination of different sources of persistence in the model. First, the model

in its most general form has external habit in consumption habit and price indexing. These

are part of the model, albeit ad hoc in the case of indexing, and therefore endogenous. Per-

sistent exogenous shocks to demand, technology and the price mark-up classify as exogenous

persistence. A key feature of the model is a further endogenous source of persistence that

arises when agents have imperfect information and learn about the state of the economy

using Kalman-filter updating.

The full model in non-linear form is as follows

1 = β(1 +Rt)Et

[
MUC

t+1

MUC
t Πt+1

]
(1)

Wt

Pt
= − 1

(1− 1
η )

MUL
t

MUC
t

(2)

MCt =
Wt

AtPt
(3)

Ht − ξβEt[Π̃
ζ−1
t+1Ht+1] = YtMUC

t (4)

Jt − ξβEt[Π̃
ζ
t+1Jt+1] =

1

1− 1
ζ

MCtMStYtMUC
t (5)

Yt =
AtLt

∆t
where ∆t ≡

1

n

n∑
j=1

(Pt(j)/Pt)
−ζ (6)

1 = ξΠ̃ζ−1
t + (1− ξ)

(
Jt
Ht

)1−ζ

where Π̃t ≡
Πt

Πγ
t−1

(7)

Yt = Ct +Gt (8)

Equation (1) is the familiar Euler equation with β the discount factor, 1 + Rt the gross

nominal interest rate, MUC
t the marginal utility of consumption and Π ≡ Pt

Pt−1
the gross

inflation rate, with Pt the price level. The operator Et[·] denotes rational expectations

conditional upon a general information set (see section 4). In (2) the real wage, Wt
Pt

is a

mark-up on the marginal rate of substitution between leisure and consumption. MUL
t is

the marginal utility of labour supply Lt. Equation (3) defines the marginal cost. Equations
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(4) to (7) describe Calvo pricing with 1 − ξ equal to the probability of a monopolistically

competitive firm re-optimizing its price, indexing by an amount γ with an exogenous mark-

up shock MSt. They are derived from the optimal price-setting first-order condition for a

firm j setting a new optimized price P 0
t (j) given by

P 0
t (j)Et

[ ∞∑
k=0

ξkDt,t+kYt+k(j)

(
Pt+k−1

Pt−1

)γ
]
=

κ

(1− 1/ζ)
Et

[ ∞∑
k=0

ξkDt,t+kPt+kMCt+kYt+k(j)

]
(9)

where the stochastic discount factor Dt,t+k = βk MUC
t+k/Pt+k

MUC
t /Pt

, MSt is a mark-up shock

common to all firms and demand for firm j’s output, Yt+k(j), is given by

Yt+k(j) =

(
P 0
t (j)

Pt+k

)−ζ

Yt+k (10)

All of these nonlinear equations depend in part on expectations of future variables. How

these expectations are formed depends on individual agents, and these may be rational or

adaptive, which are the possibilities that we consider here, or may be formed on the basis

of least squares learning.

In equilibrium all firms that have the chance to reset prices choose the same price

P 0
t (j) = P 0

t and
P 0
t

Pt
= Jt

Ht
is the real optimized price in (9).

Equation (6) is the production function with labour the only variable input into pro-

duction and the technology shock At exogenous. Price dispersion ∆t, defined in (6), can be

shown for large n, the number of firms, to be given by

∆t = ξΠ̃ζ
t∆t−1 + (1− ξ)

(
Jt
Ht

)−ζ

(11)

Finally (8), where Ct denotes consumption, describes output equilibrium, with an exogenous

government spending demand shock Gt. To close the model we assume a current inflation

based Taylor-type interest-rule

log(1 +Rt) = ρr log(1 +Rn,t−1) + (1− ρr)

(
θπ log

Πt

Π
+ log(

1

β
) + θy log

Yt
Y

)
+ ϵe,t (12)

log(1 +Rn,t) = ρr log(1 +Rn,t−1) + (1− ρr)θEt

[
log

Πt+1

Πtarg,t+1

]
+ (1− ρr) log(

1

β
) + ϵe,t

(13)

log
Πtar,t+1

Π
= ρπ log

Πtar,t

Π
+ ϵπ,t+1 (14)

where Πtar,t is a time-varying inflation target following an AR(1) process, (14), and ϵe,t is a

monetary policy shock.4 The following form of the single period utility for household r is a

4Note the Taylor rule feeds back on output relative to its steady state rather than the output gap so we
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non-separable function of consumption and labour effort that is consistent with a balanced

growth steady state:

Ut =

[
(Ct(r)− hCCt−1)

1−ϱ(1− Lt(r))
ϱ
]1−σ

1− σ
(15)

where hCCt−1 is external habit. In equilibrium Ct(r) = Ct and marginal utilities MUC
t

and MUL
t are obtained by differentiation:

MUC
t = (1− ϱ)(Ct − hCCt−1)

(1−ϱ)(1−σ)−1(1− Lt)
ϱ(1−σ) (16)

MUL
t = −(Ct − hCCt−1)

(1−ϱ)(1−σ)ϱ(1− Lt)
ϱ(1−σ)−1 (17)

Shocks At = Aeat , Gt = Gegt , Πtar,t are assumed to follow log-normal AR(1) pro-

cesses, where A, G denote the non-stochastic balanced growth values or paths of the

variables At, Gt. Following Smets and Wouters (2007) and others in the literature, we

decompose the price mark-up shock into persistent and transient components: MSt =

MSpere
mspertMStrae

εmstra,t where mspert is an AR(1) process, which results in MSt being

an ARMA(1,1) process. We can normalize A = 1 and put MS = MSper = MStra = 1 in

the steady state. The innovations are assumed to have zero contemporaneous correlation.

This completes the model. The equilibrium is described by 14 equations, (1)–(8), (12) and

the expressions for MUC
t and MUL

t , defining 13 endogenous variables Πt Π̃t Ct Yt ∆t Rt

MCt MUC
t Ut MUL

t Lt Ht Jt and
Wt
Pt

. There are 6 shocks in the system: At, Gt, MSper,t,

MStra,t, Πtar,t and ϵe,t.

Bayesian estimation is based on the rational expectations solution of the log-linear

model.5 The conventional approach assumes that the private sector has perfect information

of the entire state vector muCt , πt, πt−1, ct−1, and, crucially, current shocks mspert, mst,

at. These are extreme information assumptions and exceed the data observations on three

data sets yt, πt and rt that we subsequently use to estimate the model. If the private sector

can only observe these data series (we refer to this as symmetric information) we must turn

from a solution under perfect information on the part of the private sector (later referred

to as asymmetric information – AI since the private sector’s information set exceeds that

of the econometrician) to one under imperfect information – II.

3 Bayesian Estimation

In the same year that Blanchard and Kahn (1980) provide a general solution for a linear

model under RE in the state space form, Sims (1980) suggests the use of Bayesian methods

for solving multivariate systems. This leads to the development of Bayesian VAR (BVAR)

avoid making excessive informational demands on the central bank when implementing this rule.
5Lower case variables are defined as xt = log Xt

X
. rt and πt are log-deviations of gross rates. The validity

of this log-linear procedure for general information sets is discussed in the next section.
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models (Doan et al. (1984)), and, during the 1980s, the extensive development and appli-

cation of Kalman filtering-based state space systems methods in statistics and economics

(Aoki (1987), Harvey (1989)).

Modern DSGE methods further enhance this Kalman filtering based Bayesian VAR state

space model with Monte-Carlo Markov Chain (MCMC) optimising, stochastic simulation

and importance-sampling (Metropolis-Hastings (MH) or Gibbs) algorithms. The aim of this

enhancement is to provide the optimised estimates of the expected values of the currently

unobserved, or the expected future values of the variables and of the relational parameters

together with their posterior probability density distributions (Geweke (1999)). It has been

shown that DSGE estimates are generally superior, especially for the longer-term predictive

estimation than the VAR (but not BVAR) estimates (Smets and Wouters (2007)), and

particularly in data-rich conditions (Boivin and Giannoni (2005)).

The crucial aspect is that agents in DSGE models are forward-looking. As a con-

sequence, any expectations that are formed are dependent on the agents’ information set.

Thus unlike a backward-looking engineering system, the information set available will affect

the path of a DSGE system.

The Bayesian approach uses the Kalman filter to combine the prior distributions for

the individual parameters with the likelihood function to form the posterior density. This

posterior density can then be obtained by optimizing with respect to the model parameters

through the use of the Monte-Carlo Markov Chain sampling methods. Four variants of

our linearized model are estimated using the Dynare software (Juillard (2003)), which has

been extended by the paper’s authors to allow for imperfect information on the part of the

private sector.

In the process of parameter estimation, the mode of the posterior is first estimated using

Chris Sim’s csminwel after the models’ log-prior densities and log-likelihood functions are

obtained by running the Kalman recursion and are evaluated and maximized. Then a

sample from the posterior distribution is obtained with the Metropolis-Hasting algorithm

using the inverse Hessian at the estimated posterior mode as the covariance matrix of the

jumping distribution. The scale used for the jumping distribution in the MH is set in order

to allow a good acceptance rate (20%-40%). A number of parallel Markov chains of 100000

runs each are run for the MH in order to ensure the chains converge. The first 25% of

iterations (initial burn-in period) are discarded in order to remove any dependence of the

chain from its starting values.

3.1 Data and Priors

To estimate the system, we use three macro-economic observables at quarterly frequency

for the US: real GDP, the GDP deflator and the nominal interest rate. Since the variables

in the model are measured as deviations from a constant steady state, the time series are

simply de-trended against a linear trend in order to obtain approximately stationary data.

As a robustness check we also ran estimations using an output series detrending output with
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a linear-quadratic trend. Following Smets and Wouters (2003), all variables are treated as

deviations around the sample mean. Real variables are measured in logarithmic deviations

from linear trends, in percentage points, while inflation (the GDP deflator) and the nominal

interest rate are detrended by the same linear trend in inflation and converted to quarterly

rates. The estimation results are based on a sample from 1981:1 to 2006:4.

The values of priors are taken from Levin et al. (2006) and Smets and Wouters (2007).

Table 6 in Appendix D provides an overview of the priors used for each model variant

described below. In general, inverse gamma distributions are used as priors when non-

negativity constraints are necessary, and beta distributions for fractions or probabilities.

Normal distributions are used when more informative priors seem to be necessary. We

use the same prior means as in previous studies and allow for larger standard deviations,

i.e. less informative priors, in particular for the habit parameter and price indexation. The

priors on ξ are the exception and based on Smets and Wouters (2007) with smaller standard

deviations. Also, for the parameters γ, hC , ξ and ϱ we centre the prior density in the middle

of the unit interval. The priors related to the process for the price mark-up shock are

taken from Smets and Wouters (2007). The priors for µ1, µ2, µ3, λh, λf are also assumed

beta distributed with means 0.5 and standard deviations 0.2. Three of the structural

parameters are kept fixed in the estimation procedure. These calibrated parameters are

β = 0.99; L = 0.4, cy = 0.6.

3.2 Estimation Results

We consider 4 model variants: GH (γ, hC > 0), G (hC = 0), H (γ = 0) and Z (zero persis-

tence or γ = hC = 0). Then for each model variant we examine three information sets: first

we make the assumption that private agents are better informed than the econometricians

(the standard asymmetric information case in the estimation literature) – the Asymmetric

Information (AI) case. Then we examine two symmetric information sets for both econo-

metrician and private agents: Imperfect Information without measurement error on the

three observables rt, πt, yt (II) and measurement error on two observables πt, yt (IIME).

This gives 12 sets of results. First Table 7 in Appendix D reports the parameter estimates

using Bayesian methods. It summarizes posterior means of the studied parameters and

90% confidence intervals for the four model specifications across the three information sets,

AI, II and IIME, as well as the posterior model odds. Overall, the parameter estimates are

plausible and reasonably robust across model and information specifications. The results

are generally similar to those of Levin et al. (2006) and Smets and Wouters (2007) for the

US, thus allowing us to conduct relevant empirical comparisons.

First it is interesting to note that the parameter estimates are fairly consistent across

the information assumptions despite the fact that these alternatives lead to a considerably

better model fit based on the corresponding posterior marginal data densities. Focusing

on the parameters characterising the degree of price stickiness and the existence of real

rigidities, we find that the price indexation parameters are estimated to be smaller than

6



assumed in the prior distribution (in line with those reported by Smets and Wouters (2007)).

The estimates of γ imply that inflation is intrinsically not very persistent in the relevant

model specifications. The posterior mean estimates for the Calve price-setting parameter,

ξ, obtained from Model GH across all the information sets imply an average price contract

duration of about 3 − 4 (quarters compared with the prior of 2 quarters) similar to the

findings of Christiano et al. (2005), Levin et al. (2006) and Smets and Wouters (2007).

The external habit parameter is estimated to be around 90% of past consumption, which

is somewhat higher than the estimates reported in Christiano et al. (2005), although this

turns out to be a very robust outcome of the estimated models.

In Table 1 we report the posterior marginal data density from the estimation which

is computed using the Geweke (1999) modified harmonic-mean estimator. The marginal

data density can be interpreted as maximum log-likelihood values, penalized for the model

dimensionality, and adjusted for the effect of the prior distribution (Chang et al. (2002)).

Appendix E compares these results obtained with linear trend with those where output

is detrended using a linear-quadratic trend. In fact the results change very little, so we

continue to use linear detrending. Whichever model variant has the highest marginal data

density attains the best relative model fit. The values for imperfect information with

measurement error are virtually identical to those without measurement error, so we have

excluded them from the table.

Model AI II IIME

H -92.85 -90.90 -92.18

G -103.77 -102.03 -99.79

GH -96.95 -96.62 -94.74

Z -99.48 -96.48 -97.14

Table 1: Marginal Log-likelihood Values Across Model Variants and Information Sets

The model posterior probabilities are constructed as follows. Let pi (θ|mi) represent

the prior distribution of the parameter vector θ ∈ Θ for some model mi ∈ M and let

L (y|θ,mi) denote the likelihood function for the observed data y ∈ Y conditional on the

model and the parameter vector. Then the joint posterior distribution of θ for model mi

combines the likelihood function with the prior distribution:

pi (θ|y,mi) ∝ L (y|θ,mi) pi (θ|mi)

Bayesian inference also allows a framework for comparing alternative and potentially

misspecified models based on their marginal likelihood. For a given model mi ∈ M and

common dataset, the latter is obtained by integrating out vector θ,

L (y|mi) =

∫
Θ
L (y|θ,mi) p (θ|mi) dθ
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where pi (θ|mi) is the prior density for model mi, and L (y|mi) is the data density for

model mi given parameter vector θ. To compare models (say, mi and mj) we calculate

the posterior odds ratio which is the ratio of their posterior model probabilities (or Bayes

Factor when the prior odds ratio, p(mi)
p(mj)

, is set to unity):

POi,j =
p(mi|y)
p(mj |y)

=
L(y|mi)p(mi)

L(y|mj)p(mj)
(18)

BFi,j =
L(y|mi)

L(y|mj)
=

exp(LL(y|mi))

exp(LL(y|mj))
(19)

in terms of the log-likelihoods. Components (18) and (19) provide a framework for com-

paring alternative and potentially misspecified models based on their marginal likelihood.

Such comparisons are important in the assessment of rival models.

Given Bayes factors we can compute the model probabilities p1, p2, · · ·pn for n models.

Since
∑n

i=1 pi = 1 we have that 1
p1

=
∑n

i=2BFi,1, from which p1 is obtained. Then pi =

p1BF (i, 1) gives the remaining model probabilities. These are reported in Table 2 where

we denote the probability of variant G, information assumption II say, by Pr(G, II) etc.

Pr(H, II)=0.688

Pr(H, IIME)=0.1913

Pr(H, AI)=0.0979

Pr(GH, IIME)=0.0148

Pr(Z, II)=0.0026

Pr(GH, II)=0.0023

Pr(GH, AI)=0.0016

Pr(Z, IIME)=0.0013

Remaining prob. are almost zero

Table 2: Model Probabilities Across Model Variants and Information Sets

Tables 1 and 2 reveal that a combination of Model H and with information set II

outperforms the same with information set AI by a Bayes factor of approximately 7. For all

models II ≻ AI in terms of LL. This is a striking result; although informational consistency

in intuitively appealing there is no inevitability that models that assume this will perform

better in LL terms than the traditional assumption of AI. By the same token introducing

measurement error into the private sector’s observations (information set IIME) is not

bound to improve performance and indeed we see that the IIME case does not uniformly

improve LL performance except for models G and GH where we do see IIME ≻ II ≻ AI.

Our model comparison analysis contains two other important results. First, uniformly

across all information sets indexation does not improve the model fit, but the existence

of habit is crucial. The poor performance of indexation is in a sense encouraging as this

feature of the NK is ad hoc and vulnerable to the Lucas critique. The existence of habit by

contrast is a plausible formulation of utility that addresses issues examined in the happiness
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literature.6 Second, the II as compared with AI specification leads to significantly better

fit for Model Z, and a better improvement than for the other three model variants. Model

Z we recall is the model with zero persistence mechanisms. Its substantial improvement

of performance on introducing II on the part of the private sector confirms our earlier

analytical results that show how II introduces endogenous persistence. But where other

persistence mechanisms habit and indexation exist in models H and GH these to some

extent overshadow the improvement brought by II.

4 The General Set-Up

This section describes the general set-up that applies irrespective of the informational as-

sumptions.

4.1 State-Space Representation and Information Sets

The non-linear DSGE model is linearized about a deterministic balanced growth path re-

sulting in a state-space representation[
zt+1

Etxt+1

]
= A1

[
zt

xt

]
+A2

[
Etzt

Etxt

]
+Bwt +

[
ut+1

0

]
(20)

where zt, xt are vectors of backward and forward-looking variables, respectively, wt is a

vector of policy variables, and ut is a i.d. zero mean shock variable with covariance matrix

Σu; a more general setup allows for shocks to the equations involving expectations. In

addition for the imperfect information case, we assume that agents all make the same

observations at time t, which are given by

mt = M1

[
zt

xt

]
+M2

[
Etzt

Etxt

]
+ Lwt + vt (21)

where vt is a i.d. zero mean shock variable with covariance matrix Σv, representing mea-

surement errors.

Define target variables st by

st = Jyt +Hwt (22)

Then the policy-maker’s loss function at time t by

Ωt =
1

2

∞∑
τ=0

βt[sTt+τQ1st+τ + wT
t+τQ2wt+τ ] (23)

6In particular the “Easterin paradox”, Easterlin (2003). See also Layard (2006) and Choudhary et al.
(2011) for the role of external habit in the explanation of the paradox.
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which we can rewrite as

Ωt =
1

2

∞∑
i=0

βt[yTt+τQyt+τ + 2yTt+τUwt+τ + wT
t+τRwt+τ ] (24)

where Q = JTQ1M , U = JTQ1H, R = Q2 + HTQ1H, Q1 and Q2 are symmetric and

non-negative definite, R is required to be positive definite and β ∈ (0, 1) is discount factor.

For the literature described in the introduction, rational expectations are formed as-

suming the following information sets:

1. For perfect information the private sector and policymaker/modeller have the follow-

ing information set:

It = {zτ , xτ}, τ ≤ t;A1, A2, B,Σu, [Q,U,R, β] or the monetary rule

2. For symmetric imperfect information (see Pearlman (1992), Svensson and Woodford

(2003) and for Bayesian estimation, Levine et al. (2010)):

It = {mτ}, τ ≤ t;A1, A2, B,M1,M2, L,Σu,Σv, [Q,U,R, β] or the monetary rule.

3. For the first category of asymmetric imperfect information (see Svensson and Wood-

ford (2001), Aoki (2003), Aoki (2006) and standard Bayesian estimation):

Ipst = It = {zτ , xτ}, τ ≤ t;A1, A2, B,Σu, [Q,U,R, β] or the monetary rule for the pri-

vate sector and

Ipolt = {mτ}, τ ≤ t;A1, A2, B,M1,M2, L,Σu,Σv, [Q,U,R, β] or the monetary rule for

the policymaker.

4. For the second category of asymmetric imperfect information (see Cukierman and

Meltzer (1986), Faust and Svensson (2001), Faust and Svensson (2002)) and (Melecky

et al. (2008)):

Ipolt = {mτ}, τ ≤ t;A1, A2, B,M1,M2, L,Σu,Σv, [Q,U,R, β] or the monetary rule for

the policymaker sector and

Ipst = {mτ}, τ ≤ t;A1, A2, B,M1,M2, L,Σu,Σv for the private sector.

In the rest of the paper we confine ourselves to information set 1 for perfect information

and information set 2 for imperfect information. Information set 3 is incompatible with the

ICP. Information set 4 is however compatible and is needed to address the issue of optimal

ambiguity. This is beyond the scope of this paper.

4.2 LQ Approximation of the Optimization Problem

In our models there are a number of distortions that result in the steady state output being

below (or possibly above) the social optimum. We cannot assume that these distortions are

small in the steady state and use the ‘small distortions’ (Woodford (2003)). Instead, our

computations use the large distortions approximation to this welfare function as described

in Levine et al. (2008a).
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To work out the welfare in terms of a consumption equivalent percentage increase,

expanding U(C,L) as a Taylor series, a 1% permanent increase in consumption of 1 per cent

yields a first-order welfare increase UCC × 0.01. Since standard deviations are expressed

in terms of percentages, the welfare loss terms which are proportional to the covariance

matrix (and pre-multiplied by 1/2) are of order 10−4. The losses reported in the paper in

the subsections that follow are scaled by a factor 1−β. Letting ∆Ω be these losses relative

to the optimal policy, then ce = ∆Ω× 0.01%.

4.3 Imposition of the ZLB Constraint

We can modify welfare criterion so as to approximately impose an interest rate zero lower

bound (ZLB) so that this event hardly ever occurs. Let Lt be our quadratic approximation

to the single-period loss function. As in Woodford (2003), chapter 6, the ZLB constraint

is implemented by modifying the single period welfare loss to Lt + wrr
2
n,t. Then following

Levine et al. (2008b), the policymaker’s optimization problem is to choose wr and the

unconditional distribution for rn,t (characterized by the steady state variance) shifted to

the right about a new non-zero steady state inflation rate and a higher nominal interest rate,

such that the probability, p, of the interest rate hitting the lower bound is very low.7 This is

implemented by calibrating the weight wr for each of our policy rules so that z0(p)σr < Rn

where z0(p) is the critical value of a standard normally distributed variable Z such that

prob (Z ≤ z0) = p, Rn = 1
β − 1 + π∗ ≡ Rn(π

∗) is the steady state nominal interest rate

(assuming zero growth), σ2
r = var(rn) is the unconditional variance and π∗ is the new

steady state inflation rate. Given σr the steady state positive inflation rate that will ensure

rn,t ≥ 0 with probability 1− p is given by8

π∗ = max[z0(p)σr −Rn(0)× 100, 0] (25)

In our linear-quadratic framework we can write the intertemporal expected welfare loss at

time t = 0 as the sum of stochastic and deterministic components, Ω0 = Ω̃0 + Ω̄0. Note

that Ω̄0 incorporates in principle the new steady state values of all the variables; however

the NK Phillips curve being almost vertical, the main extra term comes from the quadratic

inflation terms in the loss function. By increasing wr we can lower σr thereby decreasing π∗

and reducing the deterministic component, but at the expense of increasing the stochastic

component of the welfare loss. By exploiting this trade-off, we then arrive at the optimal

policy that, in the vicinity of the steady state, imposes the ZLB constraint, rt ≥ 0 with

probability 1− p.

7The idea that the ZLB should be avoided by choosing a long-run inflation rate rate so as increase the
corresponding long-run interest rate and make room for an active interest rate rule at all times has been
put forward recently by Blanchard et al. (2010).

8If the inefficiency of the steady-state output is negligible, then π∗ ≥ 0 is a credible new steady state
inflation rate. Note that in our LQ framework, the zero interest rate bound is very occasionally hit in which
case the interest rate is allowed to become negative.
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5 Optimal Policy Under Perfect Information

Under perfect information,

[
Etzt

Etxt

]
=

[
zt

xt

]
. Let A ≡ A1 + A2 and first consider the

purely deterministic problem with a model then in state-space form:[
zt+1

xet+1,t

]
= A

[
zt

xt

]
+Bwt (26)

where zt is an (n − m) × 1 vector of predetermined variables including non-stationary

processed, z0 is given, wt is a vector of policy variables, xt is an m × 1 vector of non-

predetermined variables and xet+1,t denotes rational (model consistent) expectations of xt+1

formed at time t. Then xet+1,t = xt+1 and letting yTt =
[
zTt xTt

]
(26) becomes

yt+1 = Ayt +Bwt (27)

The procedures for evaluating the three policy rules are outlined in the rest of this

appendix (or Currie and Levine (1993) for a more detailed treatment).

5.1 The Optimal Policy with Commitment

Consider the policy-maker’s ex-ante optimal policy at t = 0. This is found by minimizing Ω0

given by (24) subject to (27) and (22) and given z0. We proceed by defining the Hamiltonian

Ht(yt, yt+1, µt+1) =
1

2
βt(yTt Qyt + 2yTt Uwt + wT

t Rwt) + µt+1(Ayt +Bwt − yt+1) (28)

where µt is a row vector of costate variables. By standard Lagrange multiplier theory we

minimize

L0(y0, y1, . . . , w0, w1, . . . , µ1, µ2, . . .) =
∞∑
t=0

Ht (29)

with respect to the arguments of L0 (except z0 which is given). Then at the optimum,

L0 = Ω0.

Redefining a new costate column vector pt = β−tµT
t , the first-order conditions lead to

wt = −R−1(βBTpt+1 + UT yt) (30)

βATpt+1 − pt = −(Qyt + Uwt) (31)

Substituting (30) into (27)) we arrive at the following system under control[
I βBR−1BT

0 β(AT − UR−1BT )

][
yt+1

pt+1

]
=

[
A−BR−1UT 0

−(Q− UR−1UT I

][
yt

pt

]
(32)

To complete the solution we require 2n boundary conditions for (32). Specifying z0

12



gives us n−m of these conditions. The remaining condition is the ‘transversality condition’

lim
t→∞

µT
t = lim

t→∞
βtpt = 0 (33)

and the initial condition

p20 = 0 (34)

where pTt =
[
pT1t p

T
2t

]
is partitioned so that p1t is of dimension (n−m)× 1. Equation (22),

(30), (32) together with the 2n boundary conditions constitute the system under optimal

control.

Solving the system under control leads to the following rule

wt = −F

[
I 0

−N21 −N22

][
zt

p2t

]
≡ D

[
zt

p2t

]
= −F

[
zt

x2t

]
(35)

where [
zt+1

p2t+1

]
=

[
I 0

S21 S22

]
G

[
I 0

−N21 −N22

][
zt

p2t

]
≡ H

[
zt

p2t

]
(36)

N =

[
S11 − S12S

−1
22 S21 S12S

−1
22

−S−1
22 S21 S−1

22

]
=

[
N11 N12

N21 N22

]
(37)

xt = −
[
N21 N22

] [ zt

p2t

]
(38)

where F = −(R+BTSB)−1(BTSA+ UT ), G = A−BF and

S =

[
S11 S12

S21 S22

]
(39)

partitioned so that S11 is (n − m) × (n − m) and S22 is m × m is the solution to the

steady-state Ricatti equation

S = Q− UF − F TUT + F TRF + β(A−BF )TS(A−BF ) (40)

The cost-to-go for the optimal policy (OP) at time t is

ΩOP
t = −1

2
(tr(N11Zt) + tr(N22p2tp

T
2t)) (41)

where Zt = ztz
T
t . To achieve optimality the policy-maker sets p20 = 0 at time t = 0. At

time t > 0 there exists a gain from reneging by resetting p2t = 0. It can be shown that

N11 < 0 and N22 < 0.9, so the incentive to renege exists at all points along the trajectory

of the optimal policy. This is the time-inconsistency problem.

9See Currie and Levine (1993), chapter 5.
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5.1.1 Implementation

The rule may also be expressed in two other forms: First as

wt = D1zt +D2H21

t∑
τ=1

(H22)
τ−1zt−τ (42)

where D = [D1 D2] is partitioned conformably with zt and p2t. The rule then consists of a

feedback on the lagged predetermined variables with geometrically declining weights with

lags extending back to time t = 0, the time of the formulation and announcement of the

policy.

The final way of expressing the rule is express the process for wt in terms of the target

variables only, st, in the loss function. This in particular eliminates feedback from the

exogenous processes in the vector zt. Since the rule does not require knowledge of these

processes to design, Woodford (2003) refers to this as “robust” in describing it as the Robust

Optimal Explicit rule.

5.1.2 Optimal Policy from a Timeless Perspective

Noting from (38) that for the optimal policy we have xt = −N21zt − N22p2t, the opti-

mal policy “from a timeless perspective” proposed by Woodford (2003) replaces the initial

condition for optimality p20 = 0 with

Jx0 = −N21z0 −N22p20 (43)

where J is some 1×m matrix. Typically in New Keynesian models the particular choice of

condition is π0 = 0 thus avoiding any once-and-for-all initial surprise inflation. This initial

condition applies only at t = 0 and only affects the deterministic component of policy and

not the stochastic, stabilization component.

5.2 The Dynamic Programming Discretionary Policy

The evaluate the discretionary (time-consistent) policy we rewrite the cost-to-go Ωt given

by (24) as

Ωt =
1

2
[yTt Qyt + 2yTt Uwt + wT

t Rwt + βΩt+1] (44)

The dynamic programming solution then seeks a stationary solution of the form wt =

−Fzt in which Ωt is minimized at time t subject to (1) in the knowledge that a similar

procedure will be used to minimize Ωt+1 at time t+ 1.

Suppose that the policy-maker at time t expects a private-sector response from t + 1

onwards, determined by subsequent re-optimization, of the form

xt+τ = −Nt+1zt+τ , τ ≥ 1 (45)

14



The loss at time t for the ex ante optimal policy was from (41) found to be a quadratic

function of xt and p2t. We have seen that the inclusion of p2t was the source of the time

inconsistency in that case. We therefore seek a lower-order controller

wt = −F zt (46)

with the cost-to-go quadratic in zt only. We then write Ωt+1 =
1
2z

T
t+1St+1zt+1 in (44). This

leads to the following iterative process for Ft

wt = −Ftzt (47)

where

Ft = (Rt + λB
T
t St+1Bt)

−1(U
T
t + βB

T
t St+1At)

Rt = R+KT
t Q22Kt + U2TKt +KT

t U
2

Kt = −(A22 +Nt+1A12)
−1(Nt+1B

1 +B2)

Bt = B1 +A12Kt

U t = U1 +Q12Kt + JT
t U

2 + JT
t Q22Jt

J t = −(A22 +Nt+1A12)
−1(Nt+1A11 +A12)

At = A11 +A12Jt

St = Qt − U tFt − F T
t U

T
+ F

T
t RtFt + β(At −BtFt)

TSt+1(At −BtF t)

Qt = Q11 + JT
t Q21 +Q12Jt + JT

t Q22Jt

Nt = −Jt +KtFt

where B =

[
B1

B2

]
, U =

[
U1

U2

]
, A =

[
A11 A12

A21 A22

]
, and Q similarly are partitioned con-

formably with the predetermined and non-predetermined components of the state vector.

The sequence above describes an iterative process for Ft, Nt, and St starting with some

initial values for Nt and St. If the process converges to stationary values, F,N and S say,

then the time-consistent feedback rule is wt = −Fzt with loss at time t given by

ΩTC
t =

1

2
zTt Szt =

1

2
tr(SZt) (48)

5.3 Optimized Simple Rules

We now consider simple sub-optimal rules of the form

wt = Dyt = D

[
zt

xt

]
(49)
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where D is constrained to be sparse in some specified way. Rule (49) can be quite general.

By augmenting the state vector in an appropriate way it can represent a PID (proportional-

integral-derivative)controller.

Substituting (49) into (24) gives

Ωt =
1

2

∞∑
i=0

βtyTt+iPt+iyt+i (50)

where P = Q + UD +DTUT +DTRD. The system under control (26), with wt given by

(49), has a rational expectations solution with xt = −Nzt where N = N(D). Hence

yTt P yt = zTt T zt (51)

where T = P11 −NTP21 − P12N +NTP22N , P is partitioned as for S in (39) onwards and

zt+1 = (G11 −G12N)zt (52)

where G = A+BD is partitioned as for P . Solving (52) we have

zt = (G11 −G12N)tz0 (53)

Hence from (54), (51) and (53) we may write at time t

ΩSIM
t =

1

2
zTt V zt =

1

2
tr(V Zt) (54)

where Zt = ztz
T
t and V satisfies the Lyapunov equation

V = T +HTV H (55)

where H = G11 − G12N . At time t = 0 the optimized simple rule is then found by

minimizing Ω0 given by (54) with respect to the non-zero elements of D given z0 using a

standard numerical technique. An important feature of the result is that unlike the previous

solution the optimal value of D, D∗ say, is not independent of z0. That is to say

D∗ = D∗(z0)

5.4 The Stochastic Case

Consider the stochastic generalization of (26)[
zt+1

xet+1,t

]
= A

[
zt

xt

]
+Bwt +

[
ut

0

]
(56)

16



where ut is an n × 1 vector of white noise disturbances independently distributed with

cov(ut) = Σ. Then, it can be shown that certainty equivalence applies to all the policy

rules apart from the simple rules (see Currie and Levine (1993)). The expected loss at time

t is as before with quadratic terms of the form zTt Xzt = tr(Xzt, Z
T
t ) replaced with

Et

(
tr

[
X

(
ztz

T
t +

∞∑
i=1

βtut+iu
T
t+i

)])
= tr

[
X

(
zTt zt +

λ

1− λ
Σ

)]
(57)

where Et is the expectations operator with expectations formed at time t.

Thus for the optimal policy with commitment (41) becomes in the stochastic case

ΩOP
t = −1

2
tr

(
N11

(
Zt +

β

1− β
Σ

)
+N22p2tp

T
2t

)
(58)

For the time-consistent policy (48) becomes

ΩTC
t = −1

2
tr

(
S

(
Zt +

β

1− β
Σ

))
(59)

and for the simple rule, generalizing (54)

ΩSIM
t = −1

2
tr

(
V

(
Zt +

β

1− β
Σ

))
(60)

The optimized simple rule is found at time t = 0 by minimizing ΩSIM
0 given by (60).

Now we find that

D∗ = D∗
(
z0z

T
0 +

β

1− β
Σ

)
(61)

or, in other words, the optimized rule depends both on the initial displacement z0 and on

the covariance matrix of disturbances Σ.

6 Optimal Policy Under Imperfect Information

Here we assume that that there is a set of measurements as described above. Pearlman

(1992) shows that the estimate for zt at time t, denoted by zt,t is given in terms of its

estimate in the previous period zt,t−1 via the updating equation

zt,t = zt,t−1 + PDT (EPDT + V )−1(mt − Ezt,t−1) (62)

whereD = M1
1−M1

2 (A
1
22)

−1A1
21, E = M1

1+M2
1−(M1

2+M2
2 )N , N represents the saddlepath

relationship between xt,t−1 and zt,t−1 and P is the solution of the Riccati equation

P = APAT −APDT (DPDT + V )−1DPAT +Σ (63)
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where A = A1
11 −A1

12(A
1
22)

−1A1
21. zt,t can also be written as

zt,t = zt,t−1 + PDT (DPDT + V )−1(D(zt − Ezt,t−1) + vt) (64)

and one can also show that zt − zt,t and zt,t are orthogonal in expectations. Note that this

relationship is independent of policy. We may then write the expected utility as

1

2
Et

[ ∞∑
i=0

βt(yTt+τ,t+τQyt+τ,t+τ + 2yTt+τ,t+τUwt+τ + wT
t+τRwt+τ + (yt+τ − yt+τ,t+τ )

TQ(yt+τ − yt+τ,t+τ ))

]
(65)

where we note that wt+τ is dependent only on current and past yt+s,t+s. This is minimized

subject to the dynamics[
zt+1,t+1

Etxt+1,t+1

]
= (A1 +A2)

[
zt,t

xt,t

]
+Bwt +

[
zt+1,t+1 − zt+1,t

0

]
(66)

which represents the expected dynamics of the system. Note that cov(zt+1,t+1 − zt+1,t) =

PDT (DPDT + V )−1DP and cov(zt+1 − zt+1,t+1) = P − PDT (DPDT + V )−1DP .

Taking time-t expectations of the equation involving Etxt+1 and subtracting from the

original yields:

0 = A1
12(zt − zt,t) +A1

22(xt − xt,t) (67)

Furthermore, since Pearlman (1992) shows that certainty equivalence holds for both the

fully optimal and the time consistent solution, it is straightforward to show that expected

welfare for each of the regimes is given by

W J =zT0,0S
Jz0,0 +

λ

1− λ
tr(SJPDT (DPDT + V )−1DP )

+
1

1− λ
tr(Q11 −Q12(A

1
22)

−1A1
21 −A1T

21 (A
1
22)

−TQ21 +A1T
21 (A

1
22)

−TQ22(A
1
22)

−1A1
21)P̄

(68)

where

SR = S11 − S12S
−1
22 S21 P̄ = P − PDT (DPDT + V )−1DP (69)

• Sij are the partitions of SR, the Ricatti matrix.

• SNR is calculated from the standard time consistent solution algorithm.

• SSIM is calculated from the Lyapunov equation above.

The last term of (68) corresponds to the sum of the last term in (65) after utilizing (67).
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7 Optimal Monetary Policy in the NK Model: Results

This section sets out numerical results for optimal policy under commitment, optimal dis-

cretionary (or time consistent) policy and for a optimized simple Taylor rule. The model is

the estimated form of the best-fitting one, namely model H. For the first set of results we

ignore ZLB considerations. The questions we pose are first, what are the welfare costs as-

sociated with the private sector possesses only imperfect information of the state variables;

second, what are the implications of imperfect information for the gains from commitment

and third, how does imperfect information affect the form of optimized Taylor rules.

Table 1 enables us to answer the first and second of these questions. We examine four

imperfect information sets.

Imperfect Information Set I: This consists of the current and past values of the three

data series used to estimate the model, output, inflation and the interest rate plus the infla-

tion target. This represents the scenario in which a stochastic inflation target is announced

in each period and believed.

Imperfect Information Set II: This consists of the current and past values of output,

inflation and the interest rate but excludes the inflation target. This may be announced,

but its absence from the information set can be interpreted as a lack of credibility. In this

scenario the private sector must infer the target from its observations.

Imperfect Information Set III: As for I but output and inflation are only observed with

a lag, but the current interest rate is observed.

Imperfect Information Set IV: As for III but excludes the inflation target.

The corresponding forms of the simple rules are

rt = ρrt−1 + θπ(πt − πtarg
t ) + θyyt (70)

for perfect information and information sets I and II and

rt = ρrt−1 + θπ(πt−1 − πtarg
t ) + θyyt−1 (Form A) (71)

or

rt = ρrt−1 + θπEt(πt − πtarg
t ) + θyEtyt (Form B) (72)

for information sets III and IV. Of course for III, Etπ
targ
t = πtarg

t .

Results are presented for an ad hoc form of the loss function

Ω0 = E0

[
1

2

∞∑
t=0

βt
[
y2t + bπ2

t

]]
(73)

where b = ζξ
(1−ξ)(1−βξ)σ2 .

10

From Table 3 we can see that imperfect information in the form of only observing a

10For model Z in fact this is the welfare-based loss function if we replace yt with the output gap.
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subset of the state variables (information sets I and II) and then only lagged observable

variables see a steady welfare cost equivalent of a consumption equivalent loss of first 0.02%

rising almost 0.04%. The gains from commitment are small as are the costs of simplicity

as long as the inflation is observed (i.e., announced and believed).

Information Information Set Optimal Time Consistent Simple Rule A Simple Rule B

Perfect Full state vector 3.74 3.95 3.87 n. a.

Imperfect I It = [yt, πt, rt, πtar,t] 3.75 3.95 3.89 n. a.

Imperfect II It = [yt, πt, rt] 5.66 5.86 5.80 n. a.

Imperfect III It = [yt−1, πt−1, rt, πtar,t] 5.20 5.39 7.10 5.26

Imperfect IV It = [yt−1, πt−1, rt] 7.11 7.29 7.12 7.17

Table 3: Welfare Costs of Limited Information

Table 4 addresses the third question by setting out the optimized coefficients in the

Taylor rule. We find that in the case of information set IV where the target is not credible

and output and inflation are observed only with a lag, form B of the rule results in a Taylor

with far more persistence than the others. Finally Table 5 indicates there is a ZLB problem

especially for the perfect information set which need to be addressed using the approach of

Levine et al. (2008b). Variances of the nominal interest rate and the probabilities of hitting

the ZLB as described in section 4.3 indicate that there are ZLB issues for most cases.

Interestingly these are lessened under II when observations of macro-economic variables are

with a one-period lag. In this case optimal interest rate adjustment is more muted bringing

down its volatility and the probability of reaching the ZLB.

Information [ρ, θπ, θy]

Perfect 0, 10, 0.08

Imperfect I 0, 10, 0.08

Imperfect II 0, 10, 0.08

Imperfect III (A) 0, 10, 0.08

Imperfect III (B) 0.8, 6.15, 0.03

Imperfect IV (A) 0, 10, 0.08

Imperfect IV (B) 0.8, 6.15, 0.03

Table 4: Optimized Simple Rules
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Information Information Set Optimal Time Cons Simple Rule A Simple Rule B

Perfect Full state vector 0.918 0.725 0.270 n. a.
(0.159) (0.156) (0.027)

Imperfect I It = [yt, πt, rt, πtar,t] 0.752 0.290 0.182 n. a.
(0.125) (0.031) (0.01)

Imperfect II It = [yt, πt, rt] 0.752 0.289 0.182 n. a.
(0.125) (0.031) (0.01)

Imperfect III It = [yt−1, πt−1, rt, πtar,t] 0.253 0.041 0.131 0.082
(0.023) (0.000) (0.003) (0.000)

Imperfect IV It = [yt−1, πt−1, rt] 0.252 0.041 0.131 0.081
(0.023) (0.000) (0.003) (0.000)

Table 5: Interest Rate Variances (probability per quarter of hitting the ZLB in brackets).

8 Conclusions

This is the first paper to examine optimal policy with the ICP; i.e., in an estimated DSGE

NK model where informational consistency is applied at both the estimation and policy

stages. Preliminary results are encouraging; information assumptions have significant im-

plications for both welfare and for the form of the simple rule. Future work will modify

the optimal rules to enforce a low ZLB probability (as in Levine et al. (2008b)) and carry

out the exercise using a welfare-based form of the loss function. Revisiting the issues raised

in the context of a richer DSGE model that includes capital, sticky wages, search-match

labour market frictions and financial friction will also be the subject of future research.
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A Linearization of RE Model

The log-linearization11 of the model about the non-stochastic steady state zero-growth12, zero-

inflation is given by

yt = cyct + (1− cy)gt where cy =
C

Y
(A.1)

EtmuC
t+1 = muC

t − (rt − Etπt+1) (A.2)

πt =
β

1 + βγ
Etπt+1 +

γ

1 + βγ
πt−1 +

(1− βξ)(1− ξ)

(1 + βγ)ξ
(mct +mst) (A.3)

where marginal utilities, muC
t , muL

t , and marginal costs, mct, and output, yt are defined by

muC
t =

(1− ϱ)(1− σ)− 1

1− hC
(ct − hCct−1)−

ϱ(1− σ)L

1− L
lt (A.4)

muL
t =

1

1− hC
(ct − hCct−1) +

L

1− L
lt +muC

t (A.5)

wt − pt = muL
t −muC

t (A.6)

mct = wt − pt − at (A.7)

yt = at + lt (A.8)

Equations (A.1) and (A.2) constitute the micro-founded ‘IS Curve’ and demand side for the model,

given the monetary instrument. According to (A.2) solved forward in time, the marginal utility of

consumption is the sum of all future expected real interest rates. (A.3) is the ‘NK Philips Curve‘, the

supply side of our model. In the absence of indexing it says that the inflation rate is the discounted

sum of all future expected marginal costs. Note that price dispersion, ∆t, disappears up to a first

order approximation and therefore does not enter the linear dynamics. Finally, shock processes and

the Taylor rule are given by

gt+1 = ρggt + ϵg,t+1

at+1 = ρaat + ϵa,t+1

mspert+1 = ρmsmspert + ϵmsper,t+1

mst = mspert + ϵmstra,t

πtar,t+1 = ρaπtar,t + ϵtar,t+1

rt = ρrrt−1 + (1− ρr)θ(Etπt+1 − ρtarπtar,t) + ϵe,t

ϵe,t, ϵa,t, ϵg,t, ϵmsper,t, ϵmstra,t and ϵtar,t are i.i.d. with mean zero and variances σ2
ϵe , σ

2
ϵa , σ

2
ϵg , σ

2
ϵmsper

,

σ2
ϵmstra

and σ2
ϵtra respectively.

11Lower case variables are defined as xt = log Xt
X

. rt and πt are log-deviations of gross rates. The validity
of this log-linear procedure for general information sets is discussed in the next section.

12With growth we simply replace β and hC with βg ≡ β(1 + g)(1−ϱ)(1−σ)−1 and hCg = hC
1+g

.
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B Priors and Posterior Estimates

Parameter Notation Prior distribution
Density Mean

Risk aversion σ Normal 1.50 0.375
Price indexation γ Beta 0.50 0.15
Calvo prices ξ Beta 0.50 0.10
Consumption habit formation hC Beta 0.70 0.10
Preference parameter ϱ Beta 0.50 0.20

Adaptive expectations

Error adjustment - Ef,tq̄
a
t+1 µ1 Beta 0.50 0.20

Error adjustment - Eh,tu
a
c,t+1 µ2 Beta 0.50 0.20

Error adjustment - Ea
h,t[πt+1] µ3 Beta 0.50 0.20

Proportion of rational households λh Beta 0.50 0.20
Proportion of rational firms λf Beta 0.50 0.20

Interest rate rule

Inflation θπ Normal 1.50 0.25
Output θy Normal 0.125 0.05
Interest rate smoothing ρr Beta 0.80 0.10

AR(1) coefficient

Technology ρa Beta 0.85 0.10
Government spending ρg Beta 0.85 0.10
Price mark-up ρms Beta 0.50 0.20
Inflation target ρtar Beta 0.85 0.10

Standard deviation of AR(1) innovations

Technology sd(ϵa) Inv. gamma 0.40 2.00
Government spending sd(ϵg) Inv. gamma 1.50 2.00
Price mark-up sd(ϵms) Inv. gamma 0.10 2.00
Inflation target sd(ϵtar) Inv. gamma 0.10 10.00

Standard deviation of I.I.D. shocks/mearsument errors

Mark-up process sd(ϵm) Inv. gamma 0.10 2.00
Monetary policy sd(ϵe) Inv. gamma 0.10 2.00
Observation error (inflation) sd(ϵπ) Inv. gamma 0.10 2.00
Observation error (output) sd(ϵy) Inv. gamma 0.10 2.00

Table 6: Prior Distributions
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